
ROLE AND APPLICATION OF
ONTOLOGY DESIGN PATTERNS IN

BIO-ONTOLOGIES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2009

By
Mikel Egaña Aranguren

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Dedication 15

Acknowledgements 16

The author 18

Publications 20
0.1 Journals . 20
0.2 Conference proceedings . 21
0.3 Workshops . 21

About this document 22
0.4 Electronic version . 22
0.5 Abbreviations . 22
0.6 Glossary . 24

1 Introduction 27
1.1 Bio-ontologies . 28
1.2 Ontology Design Patterns (ODPs) for bio-ontologies 31
1.3 Research hypothesis and research questions 33
1.4 Contributions . 34
1.5 Thesis outline . 35

2

2 ODPs for bio-ontologies 37
2.1 Bioinformatics and the Life Sciences Semantic Web (LSSW) 37

2.1.1 Current bioinformatics and the need for precise semantics . . 37
2.1.2 Life Sciences Semantic Web 42

2.2 Ontologies . 45
2.3 Knowledge Representation (KR) languages 47

2.3.1 Extensible Markup Language (XML) 49
2.3.2 Resource Description Framework (RDF) 49
2.3.3 Resource Description Framework Schema (RDFS) 50
2.3.4 Web Ontology Language (OWL) 51

2.3.4.1 OWL syntax and semantics 51
2.3.4.2 OWL in relation to RDF and RDFS 58
2.3.4.3 OWL and LSSW 59

2.3.5 Open Biomedical Ontologies (OBO) format 61
2.4 Current bio-ontologies . 62
2.5 Quality problems of current bio-ontologies 66
2.6 ODPs . 69

2.6.1 ODPs in the literature . 70
2.6.2 ODPs in this work . 71

2.6.2.1 Comparison to other initiatives 71
2.6.2.2 A working definition for ODPs 73
2.6.2.3 Advantages of using ODPs 74
2.6.2.4 Methods for applying ODPs 79

2.7 Conclusions . 80

3 A Catalogue of ODPs 81
3.1 Motivation and requirements . 81
3.2 Design . 82
3.3 Implementation . 84
3.4 Using the catalogue . 93
3.5 Related resources . 95
3.6 Conclusions . 95

4 Ontology PreProcessor Language (OPPL) 96
4.1 Description of OPPL . 97

4.1.1 Origin . 97

3

4.1.2 Definition and general properties 99
4.1.3 OPPL 1 and OPPL 2 . 100
4.1.4 Related work . 105

4.2 Using OPPL . 106
4.3 Conclusions . 110

5 Evaluation framework 114
5.1 Introduction . 114
5.2 ODP quality . 118
5.3 Ontology engineering . 121
5.4 Ontology quality (ISO 9126 standard) 122
5.5 Conclusions . 125

6 Evaluation results 127
6.1 Execution of use cases . 127

6.1.1 Application of the Upper Level Ontology ODP in CCO 129
6.1.2 Application of the Sequence ODP in CCO 130
6.1.3 Application of the Entity-Quality ODP in GO 131
6.1.4 Application of the Selector ODP in GO 131
6.1.5 Application of the Normalisation ODP in CL 134

6.2 Results . 143
6.2.1 Upper Level Ontology ODP in CCO 143
6.2.2 Sequence ODP in CCO . 145
6.2.3 Entity-Quality ODP in GO 145
6.2.4 Selector ODP in GO . 147
6.2.5 Normalisation ODP in CL 151

6.3 Conclusions . 154

7 Conclusions 157
7.1 Research hypothesis and research questions revisited 158

7.1.1 What are ODPs? . 158
7.1.2 How can we obtain ODPs? 159
7.1.3 How can we apply ODPs? 159
7.1.4 How can we assess ODP quality? 160
7.1.5 How can we assess the impact of ODPs in bio-ontology engi-

neering? . 161

4

7.1.6 How can we assess the change of quality of bio-ontologies as
a result of applying ODPs? 161

7.1.7 How does the use of ODPs change the quality of concrete bio-
ontologies? . 161

7.2 Contributions . 162
7.2.1 Explanation of the concept of ODPs 162
7.2.2 Catalogue of ODPs . 162
7.2.3 OPPL . 163
7.2.4 Evaluation framework for ontology quality 163
7.2.5 Improved ontological artefacts 163

7.3 Outstanding issues . 163
7.3.1 Candidate ODPs . 163
7.3.2 Catalogue improvements . 164
7.3.3 Tools . 165
7.3.4 Evaluation framework improvements 165

7.4 Future work . 165
7.4.1 More ODPs . 165
7.4.2 Definition and representation of ODPs 165
7.4.3 ODPs mining . 166

7.5 Overall conclusion . 166

Bibliography 167

A The Catalogue of Ontology Design Patterns 180
A.1 Adapted SEP ODP . 180
A.2 Closure ODP . 183
A.3 Composite Property Chain ODP . 184
A.4 Defined Class Description ODP . 187
A.5 Entity-Feature-Value ODP . 188
A.6 Entity-Property-Quality ODP . 191
A.7 Entity-Quality ODP . 193
A.8 Exception ODP . 196
A.9 Interactor Role Interaction ODP . 198
A.10 List ODP . 200
A.11 Nary DataType Relationship ODP 203
A.12 Nary Relationship ODP . 205

5

A.13 Normalisation ODP . 207
A.14 Selector ODP . 210
A.15 Sequence ODP . 212
A.16 Upper Level Ontology ODP . 214
A.17 Value Partition ODP . 216

B Ontology quality values for CL and nCL 219

6

List of Tables

3.1 Documentation schema for describing each ODP 84
3.2 Extension ODPs in the online catalogue 86
3.3 Good Practice ODPs in the online catalogue 86
3.4 Domain Modelling ODPs in the online catalogue 87

4.1 Comparison between OPPL 1 and OPPL 2 101

6.1 Excerpt from the google docs spreadsheet 142

B.1 Quality comparison of CL and nCL: structural 219
B.2 Quality comparison of CL and nCL: functionality 220
B.3 Quality comparison of CL and nCL: reliability 220
B.4 Quality comparison of CL and nCL: usability 220
B.5 Quality comparison of CL and nCL: Maintainability 220
B.6 Quality comparison of CL and nCL: Quality in use 220
B.7 Overall comparison of CL and nCL 221

7

List of Figures

1.1 Rigour and axiomatic richness are used to create bio-ontologies for
computational exploitation of the information 30

2.1 Fragment of the UniProt entry for the protein Q708Y0 (I) 38
2.2 Fragment of the UniProt entry for the protein Q708Y0 (II) 39
2.3 Fragment of the UniProt entry for the protein Q708Y0 (III) 40
2.4 Information is disperse in bioinformatics resources 43
2.5 The Semantic Web stack . 44
2.6 Ontology spectrum . 46
2.7 Feature escalator . 46
2.8 Different levels of expressivity in OWL 48
2.9 RDF triple . 50
2.10 RDF graph . 50
2.11 RDF/XML representation of the OWL class nucleus 52
2.12 MOS representation of the OWL class nucleus 52
2.13 OWL entities and their role in the OWL model 52
2.14 OWL classes and subclasses . 53
2.15 Necessary condition on the class nucleus made with an existential

restriction (nucleus subClassOf part of some cell) 55
2.16 Equivalent condition on the class nucleus made with an existential

restriction (nucleus equivalentTo has part some nucleolus) . 56
2.17 RDF graph describing a concrete family 59
2.18 MOS rendering of the OWL Class catholic family 60
2.19 The OWL class catholic family and the individual Adams family . 60
2.20 Fragment of the UniProt entry for the protein Q708Y0 (IV) 65
2.21 DL notation of the abstract structure of the Value Partition ODP . . . 75
2.22 Instance of the structure of the Value Partition ODP 75

8

2.23 Instance of the structure of the Value Partition ODP (more concrete
than Figure 2.22) . 75

2.24 Advantages of using ODPs . 76

3.1 Description of the Value Partition ODP using the documentation schema 85
3.2 Basic structure of an OWL file that stores an ODP 88
3.3 OWL to UML mapping . 89
3.4 Fragment of the OWL file that describes the Value Partition ODP, in

MOS . 90
3.5 Portion of the OWL file that describes the Value Partition ODP, in MOS 91
3.6 OWL ontology representing the Value Partition ODP in Protégé . . . 91
3.7 A fragment of the HTML entry for the Value Partition ODP 92
3.8 Continuation from Figure 3.7 . 92
3.9 Directory structure of the catalogue bundle 93

4.1 GONG process example . 98
4.2 Abstraction of the GONG process example with OPPL 99
4.3 Retrieving an entity with OPPL . 100
4.4 Retrieving an entity and adding axioms to it with OPPL 100
4.5 OPPL 1 interpreter . 102
4.6 OPPL flat file used for applying the Sequence ODP in CCO 102
4.7 OPPL flat file used for performing a DL query against CCO 103
4.8 OPPL 2 Protégé plugin . 103
4.9 OPPL 2 Protégé plugin: evaluate and execute 104
4.10 OPPL 1 syntax example . 104
4.11 OPPL 2 syntax example . 104
4.12 OPPL 2 syntax example with multiple variables 104
4.13 Annotation processing with OPPL 1 105
4.14 Java code for adding a subclass axiom using the OWL API 106
4.15 OPPL script for adding a subclass axiom 106
4.16 An extract of an OPPL flat file for applying the Entity-Quality ODP in

GO . 110
4.17 Using OPPL to apply ODPs in an OWL ontology 111
4.18 Using OPPL: methods for applying ODPs 111
4.19 Adding the complete structure of the Value Partition ODP 111

9

4.20 Adding a fragment of the Value Partition ODP by retrieving entities
via their annotations . 112

4.21 Adding a fragment of the Value Partition ODP by retrieving entities
via their axioms . 112

4.22 Adding a fragment of the Closure ODP by retrieving an abstract structure112

5.1 Evaluation framework . 115

6.1 Redefinition of the GO term negative regulation of cytokine

production using the Selector ODP 132
6.2 OPPL script for applying the Selector ODP in GO 133
6.3 A non-normalised ontology . 134
6.4 A normalised ontology before automated reasoning 135
6.5 A normalised ontology after automated reasoning 135
6.6 Structure of CL . 136
6.7 OPPL script for creating the scaffold structure of nCL 139
6.8 OPPL script (continued from Figure 6.7) 140
6.9 OPPL script for adding the necessary organisms to nCL 141
6.10 OPPL script for adding one of the contributions from one of the par-

ticipants, thus, one leaf cell . 141
6.11 OPPL script for adding all the necessary derives from relations to nCL142
6.12 OPPL script for adding some corrections to nCL 142
6.13 ODP quality radar graph of the Upper Level Ontology ODP 144
6.14 Ontology engineering radar graph of the Upper Level Ontology ODP . 144
6.15 ODP quality radar graph of the Sequence ODP 146
6.16 Ontology engineering radar graph of the Sequence ODP 146
6.17 ODP quality radar graph of the Entity-Quality ODP 147
6.18 Ontology engineering radar graph of the Entity-Quality ODP 148
6.19 ODP quality radar graph of the Selector ODP 150
6.20 Ontology engineering radar graph of the Selector ODP 150
6.21 Fragment of the GO biological regulation hierarchy 150
6.22 Fragment of the GO biological regulation hierarchy, recreated by au-

tomated reasoning . 151
6.23 ODP quality radar graph of the Normalisation ODP 154
6.24 Ontology engineering radar graph of the Normalisation ODP 155
6.25 Ontology quality radar graph of the Normalisation ODP 155

10

6.26 Justifications of entailed axioms in nCL 156

A.1 Abstract structure of the Adapted SEP ODP. 181
A.2 Sample structure of the Adapted SEP ODP. 181
A.3 Abstract structure of the Closure ODP. 183
A.4 Sample structure of the Closure ODP. 184
A.5 Abstract structure of the Composite Property Chain ODP. 185
A.6 Sample structure of the Composite Property Chain ODP. 186
A.7 Abstract structure of the Defined Class Description ODP. 187
A.8 Sample structure of the Defined Class Description ODP. 188
A.9 Abstract structure of the Entity-Feature-Value ODP. 189
A.10 Sample structure of the Entity-Feature-Value ODP. 190
A.11 Abstract structure of the Entity-Property-Quality ODP. 192
A.12 Sample structure of the Entity-Property-Quality ODP. 193
A.13 Abstract structure of the Entity-Quality ODP. 194
A.14 Sample structure of the Entity-Quality ODP. 194
A.15 Abstract structure of the Exception ODP. 196
A.16 Sample structure of the Exception ODP. 197
A.17 Abstract structure of the Interactor Role Interaction ODP. 198
A.18 Sample structure of the Interactor Role Interaction ODP. 199
A.19 Abstract structure of the List ODP. 201
A.20 Sample structure of the List ODP. 202
A.21 Abstract structure of the Nary DataType Relationship ODP. 204
A.22 Sample structure of the Nary DataType Relationship ODP. 204
A.23 Abstract structure of the Nary Relationship ODP. 206
A.24 Sample structure of the Nary Relationship ODP. 206
A.25 Abstract structure of the Normalisation ODP. 208
A.26 Sample structure of the Normalisation ODP. 209
A.27 Abstract structure of the Selector ODP. 210
A.28 Sample structure of the Selector ODP. 211
A.29 Abstract structure of the Sequence ODP. 213
A.30 Sample structure of the Sequence ODP. 214
A.31 Abstract structure of the Upper Level Ontology ODP. 215
A.32 Sample structure of the Upper Level Ontology ODP. 216
A.33 Abstract structure of the Value Partition ODP. 217
A.34 Sample structure of the Value Partition ODP. 218

11

Abstract

Knowledge Representation (KR) languages such as OWL (Web Ontology Language),
having precise semantics, offer the possibility of computationally exploiting biolog-
ical knowledge, by codifying it in the axioms of bio-ontologies. Bio-ontologies are
widely used in life sciences for knowledge management. Knowledge is, however, often
represented in bio-ontologies without following rigorous principles of modelling and
the resulting bio-ontologies are axiomatically lean. Therefore knowledge cannot be
computationally exploited for integrity checking, hypothesis generation, consistency
maintenance, integration, or rich querying.

A solution that can contribute to the rigorous modelling and axiomatic richness of
bio-ontologies is the use of Ontology Design Patterns (ODPs). ODPs are thoroughly
documented and efficient solutions for recurrent problems encountered when building
ontologies. Therefore ODPs act as guides on how to use KR languages for creating
ontology fragments that have well known advantages and side effects.

In order for ODPs to be efficiently accessed by bio-ontologists, an online catalogue
of ODPs has been created, describing different ODPs using a consistent documentation
schema. Such ODPs, apart from being accessed, can be applied automatically with the
Ontology PreProcessor Language (OPPL), as OPPL makes it possible to encapsulate
ODPs in scripts to be executed on OWL ontologies, making the application of ODPs
replicable and flexible.

The infrastructure for applying ODPs formed by the catalogue and OPPL has been
used for applying ODPs in bio-ontologies like the Cell Type Ontology. The results of
such application have been evaluated to assess the applied ODPs and the change on
ontology quality. Side effects of the usage of ODPs have been spotted, but in general
terms, when ODPs are applied, bio-ontology quality improves, especially in the areas
of structure, functionality, and maintainability. Therefore it is concluded that the use
of ODPs contributes to the creation of more rigorous and axiomatically richer bio-
ontologies, providing new possibilities for knowledge management in life sciences.

12

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns any copyright in it (the “Copyright”) and s/he has given The University
of Manchester the right to use such Copyright for any administrative, promo-
tional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance
with the regulations of the John Rylands University Library of Manchester. De-
tails of these regulations may be obtained from the Librarian. This page must
form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other intellec-
tual property rights except for the Copyright (the “Intellectual Property Rights”)
and any reproductions of copyright works, for example graphs and tables (“Re-
productions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property Rights and
Reproductions cannot and must not be made available for use without the prior
written permission of the owner(s) of the relevant Intellectual Property Rights
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
exploitation of this thesis, the Copyright and any Intellectual Property Rights
and/or Reproductions described in it may take place is available from the Head
of School of School of Computer Science (or the Vice-President).

14

Dedication

Amarentzat

Uztaila hontan beteko ditut
nik nahi baino urte geiho
ilea galtzearren nik ez dut
ematen gizon serio
ene hitz garbienak ere ez du
inon ezer ez balio
nire buruari sekulan ez dio
inork jarriko prezio.

Gau ixil hontan ikusten zaitut
iparraldeko izarra
hamabost urteko neska baten
ametsa bezain ederra
urruti zaude mundu hontatik
librea eta bakarra
inoren menpe kantatzen duzu ta
zure boza da zilarra.

Bernardo Atxaga - Ruper Ordorika

15

Acknowledgements

This work was funded by the University of Manchester and the Engineering and Phys-
ical Sciences Research Council (EPSRC). Other institutions and projects have addi-
tionally funded different parts of the work: the Marie Curie-Early Stage Training
programme funded my visit to the VIB (Vlaams Instituut voor Biotechnologie), the
Ontogenesis Network funded the meetings for the Normalisation experiment, and the
European Network of Excellence in Semantic Mining funded my visit to the EBI (Eu-
ropean Bioinformatics Institute).

I got prompt and vital technical help from Nick Drummond, Chris Wroe and
Olivier Dameron. I have used the services provided by SinDominio.Net for my own
benefit without contributing as I should. I have used and adapted excellent free soft-
ware during these years, especially GNU/Linux, and I would like to thank the work of
the developers, which usually do not get the due public acknowledgements.

In academic terms, I would like to thank foremost the support and understanding
of my supervisor, Robert Stevens, who was also encouraging and challenging. I would
like to thank group leaders who welcomed me to their excellent groups: Midori Harris
of the GO editors’ team at the EBI, and especially Martin Kuiper of the Computational
Biology group at the VIB.

Plenty of people contributed with challenging discussions or interesting ideas to
this work: Jesualdo Tomás Fernández Breis, Amelia Ireland, Chris Mungall, Alan
Rector, Martin Kuiper, Alan Ruttenberg, Chris Wroe, Helen Parkinson, James Malone,
Andy Gibson, Simon Jupp, Luigi Iannone, Phil Lord, Uli Sattler, Vladimir Mironov,
Rinke Hoekstra, Matthew Horridge, Bijan Parsia, David Shotton, Midori Harris, Jon
Bard and many more. Especial acknowledgements go to Erick Antezana for being a
challenging, trustworthy and inspiring colleague from whom I have learned countless
new concepts in computer science.

My friends have not forgotten me, even though I have seldom been available, and
I am really grateful to them for that. My friends from Bilbo have been there for me in

16

SinDominio.Net

these difficult years and we have shared wonderful experiences: Barandi, Ibai, Santi,
Aurre, and everyone else. I would like to also thank my Mancunian friends, Dan, Phil
and Conor, for checking whether I was alive every now and then.

My family was very supportive during these years, especially my father Juan Ramón
and my brother Eneko. My mother, Amaia, had an amazing faith in me till her very last
moment, and she was always supportive even though she had to confront a terminal
illness.

My biggest acknowledgement goes to my partner and friend Maider, who was sup-
portive and patient, even to the extent of politely pretending to be interested in the
explanations about this work. She has shown me during these years what makes real
changes, and what truly worthy people are made of.

17

The author

Mikel Egaña Aranguren graduated from the University of Basque Country with a de-
gree in biology in 2004. Whilst an undergraduate he was awarded an Erasmus schol-
arship by the European Union, which allowed him to spend half a term in Canterbury
Christ Church University College, UK, studying environmental biology.

In 2004-2005, he completed an MSc in Bioinformatics, at the University of Manch-
ester, UK, obtaining a distinction mark. The MSc thesis was entitled “Improving the
Structure of the Gene Ontology” and it has been cited in various journal publications1.

He has been doing research since 2005 as a PhD student in the Bio Health Infor-
matics Group at the University of Manchester, culminating in this thesis. During this
period he completed two research visits: a 5 months visit to the Computational Biol-
ogy group of the Vlaams Instituut voor Biotechnologie (VIB), Belgium, funded by the
Marie Curie-Early Stage Training program, and a one month visit to the GO editors’
team of the European Bioinformatics Institute (EBI), UK, funded by the European
Network of Excellence in Semantic Mining.

He has been working in the following areas:

The Gene Ontology Next Generation2 (GONG) project provides a pipeline for dis-
secting the syntactic structure of GO term names to add new, richer axioms and
as a result exploit Automated reasoning, as described in [73]. In the same con-
text, a conceptual bridge between the OBO (Open Biomedical Ontologies) for-
mat and OWL, as a result of analysing the semantics and assumptions behind
each of them, was presented in [72].

The Cell Cycle Ontology3 (CCO) is a domain ontology that was built to represent the
aspects of the cell cycle that were absent in GO, and to connect such aspects to

1http://scholar.google.com/scholar?hl=es&lr=&cites=12900445016847716696
2http://www.gong.manchester.ac.uk
3http://cellcycleontology.org

18

http://scholar.google.com/scholar?hl=es&lr=&cites=12900445016847716696
http://www.gong.manchester.ac.uk
http://cellcycleontology.org

other resources such as UniProt [7]. ONTO-PERL4 is a Perl API for working
with OBO ontologies, developed for automating the creation and management
of CCO, as described in [5].

Ontology Design Patterns (ODPs) are documented and tested best practices of on-
tology engineering. A description of the concept of ODPs and their applica-
tion on CCO was presented in [10], and their application on GO was presented
in [30]. Some ODPs for modelling biological knowledge were collected in an
ODPs public catalogue5. The limitations and capabilities of OWL for represent-
ing biological knowledge were analysed in [108], including some ODPs.

The Ontology PreProcessor Language6 (OPPL), a scripting language for program-
matically modifying OWL ontologies, was presented in [29]. Its usage for ap-
plying different ODPs for modelling modifiers was described in [30].

Semantic Systems Biology7 (SSB) is a project that explores the use of Semantic Web
technology to enhance knowledge management on Systems Biology research.
BioGateway8, which is part of SSB, is an RDF triple store that integrates many
different bioinformatics resources [6].

He has given various talks (University of Basque Country 2005, Bio-ontologies
SIG at ISMB 2007, OWLed 2008 DC, EKAW 2008, University of Murcia 2008) and
has taught OWL advanced tutorials for the biological domain9. He has done reviewing
work for ONTORACT 2008.

4http://search.cpan.org/˜easr/
5http://odps.sf.net/
6http://oppl.sourceforge.net/
7http://www.semantic-systems-biology.com/
8http://www.semantic-systems-biology.org/biogateway
9http://www.co-ode.org/resources/tutorials/bio/

19

http://search.cpan.org/~easr/
http://odps.sf.net/
http://oppl.sourceforge.net/
http://www.semantic-systems-biology.com/
http://www.semantic-systems-biology.org/biogateway
http://www.co-ode.org/resources/tutorials/bio/

Publications

0.1 Journals

Erick Antezana, Ward Blondé, Mikel Egaña, Alistair Rutherford, Robert Stevens,
Bernard De Baets, Vladimir Mironov, Martin Kuiper. Structuring the Life Sci-
ence Resourceome for Semantic Systems Biology: Lessons from the BioGate-
way Project. BMC bioinformatics, accepted for publication.

Erick Antezana, Mikel Egaña, Bernard De Baets, Ward Blondé, Aitzol Illarramendi,
Iñaki Bilbao, Bernard De Baets, Robert Stevens, Vladimir, Mironov and Martin
Kuiper. The Cell Cycle Ontology: An application ontology for the representa-
tion and integrated analysis of the cell cycle process. Genome Biology 2009,
10(5):R58.

Mikel Egaña Aranguren, Erick Antezana, Martin Kuiper, Robert Stevens. Ontology
Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology.
BMC bioinformatics 2008, 9(Suppl 5):S1.

Mikel Egaña Aranguren, Chris Wroe, Carole Goble, Robert Stevens. In situ mi-
gration of handcrafted ontologies to Reason-able Forms. Data & Knowledge

Engineering 2008, 66, 147-162.

E. Antezana, M. Egaña, B. De Baets, M. Kuiper and V. Mironov. ONTO-PERL: An
API supporting the development and analysis of bio-ontologies. Bioinformatics

2008, 24(6):885-887.

Mikel Egaña Aranguren, Sean Bechoffer, Phillip Lord, Ulrike Sattler and Robert
Stevens. Understanding and using the meaning of statements in a bio-ontology:
recasting the Gene Ontology in OWL. BMC Bioinformatics 2007, 8:57.

20

Robert Stevens, Mikel Egaña Aranguren, Katy Wolstencroft, Ulrike Sattler, Nick
Drummond and Matthew Horridge. Using OWL to Model Biological Knowl-
edge. International Journal of Human Computer Studies 2006, 65:7, 583-594.

0.2 Conference proceedings

Mikel Egaña, Alan Rector, Robert Stevens, Erick Antezana. Applying Ontology
Design Patterns in bio-ontologies. EKAW 2008, LNCS 5268, pp. 7-16.

0.3 Workshops

Mikel Egaña, Robert Stevens, Erick Antezana. Transforming the Axiomisation of
Ontologies: The Ontology Pre-Processor Language. OWLed 2008, Washington
DC, USA.

Jesualdo Tomás Fernández-Breis, Mikel Egaña Aranguren, Robert Stevens. A
Quality Evaluation Framework for Bio-Ontologies. ICBO 2009, Buffalo, USA.
Accepted.

21

About this document

0.4 Electronic version

An electronic version of this document is available online10, containing clickable hy-
perlinks and bookmarks for navigating the document.

0.5 Abbreviations

ODP: Ontology Design Pattern.

KR: Knowledge Representation.

WWW: World Wide Web.

OWL: Ontology Web Language.

LSSW: Life Sciences Semantic Web.

GO: Gene Ontology.

OBO: Open Biomedical Ontologies.

SO: Sequence Ontology.

OBI: Ontology for Biomedical Investigations.

OPPL: Ontology PreProcessor Language.

CL: Cell Type Ontology.

CCO: Cell Cycle Ontology.

10http://www.gong.manchester.ac.uk/thesis.pdf.zip

22

http://www.gong.manchester.ac.uk/thesis.pdf.zip

W3C: World Wide Web Consortium.

HTML: HyperText Markup Language.

W3C HCLS: Semantic Web Health Care and Life Sciences Interest Group.

QCR: Qualified Cardinality Restriction.

XML: eXtensible Markup language.

RDF: Resource Description Framework.

URI: Uniform Resource Identifier.

SPARQL: SPARQL Protocol and RDF Query Language.

RDFS: Resource Description Framework Schema.

API: Application Programming Interface.

MOS: Manchester OWL Syntax.

DL: Description Logics.

TBox: Terminological Box.

ABox: Assertional Box.

UNA: Unique Name Assumption.

OWA: Open World Assumption.

GOA: Gene Ontology Annotation.

KB: Knowledge Base.

BFO: Basic Formal Ontology.

RO: Relations Ontology.

OBOL: OBO Language.

LODP: Logical Ontology Design Pattern.

CODP: Concept Ontology Design Pattern.

23

CODEP: Content Ontology Design Pattern.

UML: Unified Modelling Language.

W3C BPD: Semantic Web Best Practices and Deployment Working Group.

XSLT: eXtensible Stylesheet Language Transformations.

GrOWL: Graphical OWL.

GONG: Gene Ontology Next Generation.

nCL: normalised Cell Type Ontology.

PATO: Phenotypic Quality Ontology.

0.6 Glossary

The following definitions have been adapted from [72]: Knowledge Representation
(KR) Language, Automated reasoning, Soundness, Completeness, Description Logics
(DL), Monotonic.

Knowledge Representation (KR) Language: A language used to represent informa-
tion about the world or a particular domain. KR Languages are often formal lan-
guages, with a precise semantics for the operators in the language, allowing for
the use of deduction or automated reasoning (see Automated reasoning). One of
the most used KR languages is the Web Ontology Language (OWL).

Ontology: A representation of a concrete knowledge domain, created using a KR lan-
guage and implemented in a format that can be computationally processed. The
term “model”, as an ideal representation of some real objects, is usually used
as a synonym of ontology, and “modelling” as a synonym of creating or main-
taining an ontology. However, the term “model” has a different and very precise
meaning in the context of model-theoretic semantics (see Semantics) [31].

Axiom: An axiom is a logical statement relating different entities of a particular knowl-
edge domain, expressed using a KR language. Axioms can be logically entailed
by other axioms, in which case they will be inferred by a reasoner (See Auto-
mated reasoning). The more expressive a KR language, the more complex and

24

hence computationally expensive axioms can be created. An ontology is com-
posed by a collection of axioms, and hence an ontology with complex axioms
has a rich axiomisation: it richly describes the knowledge domain.

Semantics: In model-theoretic semantics, the statements are mapped to a set-theoretic
structure with precise formal properties. Thus, the “meaning” of an statement is
provided by a formalism shared by different scientists, instead of relying on such
meaning being arbitrarily interpreted by each scientist [31]. In OWL, the rela-
tion between syntax and semantics is given by interpretations that consist of an
interpretation domain and an interpretation function. The interpretation function
maps the entities and axioms of the syntactic statement to the interpretation do-
main. If an interpretation satisfies all the axioms of a given ontology, it is said to
be a “model” of the ontology [58].

Automated reasoning: The application of a set of rules or processes in order to derive
conclusions from a set of statements. For example, “consistency checking” can
determine whether a set of facts are self-consistent or contain a contradiction.
Automated reasoning can be used to realize a number of tasks in KR, for example
computing implicit classification hierarchies from collections of definitions or
query answering.

Soundness: Soundness is a property of an inference procedure or proof theory for a
language that is in terms of the underlying semantics of the language. A Sound
procedure is one which is guaranteed to only produce correct conclusions. See
also Completeness.

Completeness: Completeness relates an inference procedure or proof theory for a lan-
guage with the underlying semantics of the language. A Complete procedure is
one which is guaranteed to find all valid inferences. See also Soundness.

Description Logics (DL): DLs are a family of KR Languages tailored for expressing
knowledge about concepts and concept hierarchies. They are usually given a
declarative semantics, which allows them to be seen as sub-languages of pred-
icate logic. They are considered an important formalism, unifying and giving
a logical basis to the well known traditions of frame-based systems, semantic
networks and KL-ONE-like languages, object-oriented representations, seman-
tic data models, and type systems. DL systems have been used for building a
variety of applications including conceptual modelling, information integration,

25

query mechanisms, view maintenance, software management systems, planning
systems, configuration systems, and natural language understanding. In general,
DL languages are “well-behaved”, with sound and complete procedures for in-
ference. See also Soundness, Completeness.

Monotonic: In a monotonic logic, conclusions can not be falsified by the addition of
new information. Thus, “additional axioms can lead to additional inferences but
they cannot annul previous inferences” [84]. In a non-monotonic logic, in con-
trast, the addition of new hypotheses can cause previously derived conclusions
to become false.

Rigour: Rigorous modelling exploits precise, consistent and explicit modelling (onto-
logical) principles. For example, the part-of relationship in a concrete ontology
can be defined as being transitive, and only relating physical independent enti-
ties. Expressed in a KR formalism, rigorous modelling can be computationally
exploited. However, “rigorous” is not a synonym of “formal”, as “rigorous”
relates to the content of an ontology, and “formal” relates to a means of compu-
tationally expressing such rigour through semantics.

Schema: A Schema, in general, is a concrete, explicit and agreed description of the
way some data should be presented, in terms of the data types used, the relations
between such types, etc. In different fields this term has different but related
meanings, e.g. a database schema is different from an XML schema, but they are
implementations of the same general notion. Ontologies are sometimes regarded
as schemas.

URI: An URI, Uniform Resource Identifier, is a string with a concrete syntax that
identifies a resource on the internet. A URL, Uniform Resource Locator, is a
string, also with a concrete syntax, that gives the location of such resource. A
URL is a type of URI.

26

Chapter 1

Introduction

Life sciences, and especially molecular biology, have generated vast amounts of data
since the advent of technologies like DNA sequencing, requiring a whole new disci-
pline, bioinformatics, for scientists to be able to computationally exploit the informa-
tion derived from such data [110]. Such exploitation of information is performed by
querying it, filtering it, and combining it with other information to obtain new results.
For example, a scientist can use ortholog information and other sources of information
(e.g. protein interactions, cellular location) to deduce the hypothetical function of a
given protein.

The bottleneck for an efficient scientific activity in life sciences research has shifted
from experimental data obtention, which is exponentially growing, to the exploitation
of the information derived from the data, which is not growing at the same pace. This
is due to two main reasons: the nature of biological information and the strategy that
has been adopted for its exploitation. The biological information available in public re-
sources is complex, heterogeneously represented, fine-grained and stored in high quan-
tities. On the other hand, the exploitation of such information has been traditionally
focused on human intervention, and implemented with tools like relational databases,
text-based browsing and ad hoc creation of customised programs. The problem with
such approach is that it results in a limited exploitation of the information. For ex-
ample, it is difficult for a single scientist to relate different items of information in a
principled manner (so other scientists can reuse such relations), and, most importantly,
queries to the information yield incomplete results. Therefore plenty of information
is not processed and adequately related, so as to allow its maximum exploitation by
scientists.

One of the steps that has been taken to improve the information management in life

27

CHAPTER 1. INTRODUCTION 28

sciences is to represent information using ontologies (bio-ontologies). However, many
of the current bio-ontologies lack the necessary quality for fully functional information
management. This thesis proposes the use of Ontology Design Patterns (ODPs) to
develop bio-ontologies of higher quality.

The chapter is organised as follows. Section 1.1 provides a brief introduction to
the research problem: the lack of quality in current bio-ontologies. A solution to such
lack of quality, based in the use of ODPs, is proposed in Section 1.2. The research
hypothesis and the research questions are explained in Section 1.3. The contributions
of this work to the community are reviewed in Section 1.4. Finally, the structure of the
thesis is outlined in Section 1.5.

1.1 Bio-ontologies

One way of improving the exploitation of information by life scientists is using the
aid of computers. Computers, contrary to human users, are able to cope with the
complexity and large quantity of biological information, provided that the information
is codified in a way that computers can efficiently manage. Thus, the information needs
to be “translated” to a form that allows the computer to manage its meaning. Such
translation is provided by precise semantics, a mathematical formalism that allows to
state information unambiguously via axioms.

Knowledge Representation (KR) languages are employed by human users to ex-
ploit precise semantics and create ontologies that store the information, thus to state
the information computationally so that the computer manages it for the human users.
An ontology is a computational representation, with precise semantics, of the con-
cepts extracted from a concrete domain of knowledge. Such concepts are codified with
identifiers and connected with relationships (axioms), creating a structure. The use of
precise semantics allows algorithms to process the statements made in an ontology and
retrieve results in a process called “automated reasoning”.

Ontologies that represent information about biology, i.e. bio-ontologies, are widely
used in current bioinformatics [44]. One of the main benefits of using bio-ontologies
is to exploit automated reasoning, e.g. to generate new hypotheses about biological
data, to query the information, to classify a new item against the bio-ontology or to
check the consistency of the information held in public resources [78]. A bio-ontology
is a consensus representation of a domain of knowledge, and, as such, it can be used
to integrate different resources (as different items of different resources point to the

CHAPTER 1. INTRODUCTION 29

same key concept in the ontology) or share information in an agreed computational
language.

Combining automated reasoning with the integration of resources scattered over
the internet, that is, combining semantics with the World Wide Web (WWW), a pow-
erful environment for distributed information management is obtained. Such a com-
bination of semantics with WWW technology has been proposed for enhancing the
current WWW, in the so called Semantic Web. The Semantic Web is an ideal next
generation WWW, where information is processed by computers, not only by humans.
The Semantic Web is based on codifying the information using KR techniques as well
as traditional WWW techniques. One of those KR techniques is to use a KR language
to create ontologies in a WWW context; the Web Ontology Language, OWL, is one of
the most used KR languages for creating such ontologies. Bio-ontologies are part of
the so called Life Sciences Semantic Web (LSSW), the application of Semantic Web
technology to the problem of information management in life sciences [49].

The majority of current bio-ontologies differ from the ideal of a fully functional
LSSW due to mainly three aspects: rigour, axiomatic richness, and usage.

A rigorous ontology follows clear and consistent principles for defining how to rep-
resent information in the ontology. There are KR formalisms that offer the possibility
of practically exploiting such rigour, e.g. languages that offer the possibility of sound
and complete automated reasoning1, like OWL.

The axiomisation of an ontology indicates what has been stated in the ontology.
An ontology with a rich axiomisation represents complex knowledge with a high res-
olution, exploiting complex axioms. An ontology with a lean axiomisation represents
knowledge in a simpler manner, exploiting simpler axioms. The level of axiomisation
that can be achieved when building an ontology depends on the expressivity of the KR
language used: the more expressive the language, the more complex axioms can be
codified in the ontology.

Rigour and axiomatic richness are independent aspects of bio-ontologies. There
are bio-ontologies implemented with rigour and with lean axiomisation and, on the
other hand, bio-ontologies with rich axiomisation implemented without rigour. The
OWL version of the Gene Ontology (GO) [40] is an example of the former, as it is
implemented exploiting a rigorous formalism (OWL), but a limited fragment of the

1Even though sound and complete automated reasoning can be guaranteed in theory, performing
automated reasoning can be difficult in some ontologies, depending on the complexity of the ontology
and the available computational resources [27].

CHAPTER 1. INTRODUCTION 30

Figure 1.1: Rigour and axiomatic richness are used to create bio-ontologies for com-
putational exploitation of the information. Rigour and axiomatic richness are most
efficiently implemented through a KR formalism like OWL. That is, OWL can be used
to create rigorous and axiomatically rich bio-ontologies. Those bio-ontologies can
be computationally exploited, via automated reasoning, to perform various tasks like
checking the consistency of the information, rich querying of the information, or to
generate new hypotheses about the information.

expressivity of OWL is used in axioms. On the other hand, the OBO2 version of the
Sequence Ontology (SO) [63] is an example of the latter, as it is axiomatically rich
(e.g. symmetric properties and intersections can be found in SO) but such axioms are
implemented in a non-rigorous manner, without exploiting the precise semantics of a
formalism like OWL. However, when axiomatic richness is implemented in a rigor-
ous formalism with sound and complete automated reasoning, a powerful knowledge
representation is achieved, as the combination allows computational tools to process
the axioms, via automated reasoning, instead of only being (inefficiently) processed by
human users (Figure 1.1).

To what extent rigour and axiomatic richness are needed by the ontologists’ com-
munity depends on a third aspect of ontologies, the function that such ontologies will
perform. Such function ranges from acting as a controlled vocabulary (a list of terms
with a loose structure) to capturing the knowledge of a concrete domain in a domain

2OBO (Open Biomedical Ontologies) is a KR language used exclusively for bio-ontologies, de-
scribed in Chapter 2.

CHAPTER 1. INTRODUCTION 31

ontology of the highest possible resolution. In a controlled vocabulary axiomatic rich-
ness and rigour are not important, but in a domain ontology they are paramount for
efficient automated reasoning and hence maintenance, querying, and hypothesis gen-
eration. One of the problems of the majority of current bio-ontologies is that both
extremes are neither clear for users nor developers. As a result, most bio-ontologies
are used as domain ontologies and controlled vocabularies at the same time but they are
developed only as controlled vocabularies, without using complex axioms or following
principles of rigorous modelling.

One of the main reasons for such lack of rigour and axiomatic richness is that rig-
orous and axiomatically rich bio-ontologies are difficult to build. The complex axioms
needed to effectively represent complex knowledge are unlikely to be “discovered” by
biologists in the whole available expressivity of a KR formalism like OWL. Also, such
axioms are difficult to understand and sometimes non-intuitive, especially with regards
to the conceptual implications of using an axiom or the consequences of applying au-
tomated reasoning after adding the axiom. Rigour is also difficult to comprehend, as
the formal definitions are abstract and obscure.

Besides the intrinsic difficulty of building ontologies, the application of KR tech-
nics to biological knowledge is relatively new, and bio-ontology engineering has been
demonstrated to be more difficult for biologists than expected [92, 129]. As a result,
however successful and widely used, many bio-ontologies have not been implemented
exploiting the best that KR languages like OWL can offer in terms of axiomatic rich-
ness and rigour. There are some exceptions, like OBI3 (Ontology of Biomedical In-
vestigations), yOWL [118], and the Phosphatases ontology [125], but the majority of
bio-ontologies lack axiomatic richness and rigour. Therefore, many bio-ontologies
represent biological knowledge in a limited and lean manner, without exploiting pre-
cise semantics, hence hampering the prospective exploitation of such knowledge by
computers and ultimately by humans.

1.2 Ontology Design Patterns (ODPs) for bio-ontologies

This section describes an ontology engineering technique, the use of Ontology Design
Patterns (ODPs), that facilitates the process of building axiomatically rich and rigorous
bio-ontologies.

In software engineering, the problem of how to build powerful artefacts minimising

3http://purl.obofoundry.org/obo/obi

http://purl.obofoundry.org/obo/obi

CHAPTER 1. INTRODUCTION 32

the engineering effort and maximising the exploitation of the languages’ expressivity
has been widely explored. As software engineering is an older and more widespread
discipline than ontology engineering, some of the techniques employed to overcome
the problem have been thoroughly tested and demonstrated to work in the development
process of widely used software.

One of the most widespread techniques is the use of design patterns in the develop-
ment of software [33]. A design pattern is a solution to a common modelling problem
that appears when designing different systems. The design pattern for such a prob-
lem is an efficient solution, as it has been already widely used and tested. It is also
thoroughly documented and uniquely identified. A software engineer can use a collec-
tion of design patterns to design an efficient system in a principled and hence reusable
manner and with reduced effort.

The same technique can be applied in ontology engineering, thus, design patterns
can be defined for tackling common pitfalls and modelling problems that arise when
building ontologies. Such design patterns are known as Ontology Design Patterns
(ODPs). ODPs encapsulate the complex expressivity and precise semantics of KR
languages in self-contained efficient solutions, properly documented and thoroughly
tested by other, more experienced, ontology developers. Therefore, ODPs are “off the
shelf” solutions to problems faced when creating and maintaining ontologies. ODPs
can be regarded as “modelling units”, thus discrete fragments of modelling, formed by
a concrete set of axioms.

For example, it could be that an ontologist wants to model the fact that water has
a standard boiling temperature under a certain pressure and using certain units. There
is a simplistic ODP that shows how to model such information, the Nary DataType
ODP4, that consists of an OWL class (standard water boiling point) that holds
all the numeric values: temperature value (100), temperature unit (Celsius), pressure
value (1), and pressure unit (Atm). This simplistic example shows the rationale behind
the use of ODPs: it could be that an ontologist does not come up with the idea of nam-
ing a class to hold all the relationships (temperature value, temperature unit,
pressure value, pressure unit), and the Nary DataType ODP acts as a guide to-
wards such idea.

Therefore, if the expressivity of a KR language is regarded as a hypothetical mul-
tidimensional space (called “expressivity space” in this thesis), an ODP reduces the
search for an optimal solution, which is a concrete point in such space that fulfils the

4http://www.gong.manchester.ac.uk/odp/html/Nary_DataType_Relationship.html

http://www.gong.manchester.ac.uk/odp/html/Nary_DataType_Relationship.html

CHAPTER 1. INTRODUCTION 33

ontologist’s modelling requirements. As the modelling requirements that the ODP
solves are clearly explained in its documentation, the ODP encapsulates a point on the
expressivity space with an identifier and the requirements, making it easier to find. Us-
ing ODPs in the development of the ontology, the actual modelling becomes explicit.
Also, the modelling can be shared in the form of ODPs, as ready to apply modelling
units. Finally, the modelling is principled, making such modelling efficient to reuse.

As mentioned in Section 1.1, bio-ontologies lack the axiomatic richness and rigour
that KR languages such as OWL can offer. As ODPs guide the ontologists in exploiting
the capabilities of KR languages to solve concrete problems, they can be used by bi-
ologists to create axiomatically rich and rigorous bio-ontologies [10]. By using ODPs
the biologists should be able to develop rigorous, robust and axiomatically rich bio-
ontologies, hence being able to efficiently exploit precise semantics, and do so more
efficiently and faster.

1.3 Research hypothesis and research questions

The hypothesis of this thesis is that by using ODPs, bio-ontologies of higher qual-
ity can be created with reduced development effort. Higher quality bio-ontologies,
compared to the majority of current bio-ontologies, are axiomatically richer and more
rigorous. Axiomatically richer bio-ontologies allow for more diverse computations
through automated reasoning (inference): more descriptive queries, more thorough
analysis of biological information, consistency checking of the represented knowl-
edge, hypothesis generation, and deeper integration of the information. More rigorous
bio-ontologies can be more consistently and therefore more efficiently maintained. By
using ODPs, all that richness and robustness can be obtained with reduced effort and
the bio-ontologists’ effort can be focused in modelling even more biological knowl-
edge that needs to be captured in bio-ontologies.

The validation of the hypothesis consists of evaluating three areas: ODP quality,
ontology engineering and ontology quality. ODP quality analyses ODPs as standalone
units, focusing on the features and drawbacks of an ODP independently of its con-
crete application on an ontology. An ODP with a high quality is beneficial because it
encapsulates a highly expressive or especially complex modelling in a clear way and
with the least possible drawbacks. Ontology engineering analyses how each ODP af-
fects the ontology development process, in terms of making it more efficient and more
principled. Ontology quality analyses the quality improvement of bio-ontologies as a

CHAPTER 1. INTRODUCTION 34

consequence of applying ODPs, in terms of axiomatic richness, rigour, and use of the
ontology.

The hypothesis and the evaluation strategy result in the following research ques-
tions, answered in the remaining chapters of this thesis:

What are ODPs? (Chapter 2).

How can we obtain ODPs? (Chapter 3).

How can we apply ODPs? (Chapter 4).

How can we assess ODP quality? (Chapter 5, Chapter 6).

How can we assess the impact of ODPs in bio-ontology engineering? (Chapter 5,
Chapter 6).

How can we assess the change of quality of bio-ontologies as a result of applying
ODPs? (Chapter 5).

How does the use of ODPs change the quality of concrete bio-ontologies? (Chap-
ter 5, Chapter 6).

1.4 Contributions

The work performed for this research has resulted in the following contributions:

Explanation of the concept of ODPs. The exploitation of ontology engineering tech-
niques such as the use of ODPs is relatively new in bio-ontology development:
the idea of ODPs and their advantages has been thoroughly explained in this
thesis, as well as in publications [10, 30, 108] and a tutorial5.

Public catalogue of ODPs. An online catalogue of ODPs6 has been created in order
to collect, classify and consistently describe ODPs [10]. The bio-ontologists can
use the catalogue to explore and retrieve ODPs.

Ontology PreProcessor Language (OPPL). OPPL7 is a scripting language for auto-
matically changing the axioms of OWL ontologies [30, 29, 10]. OPPL can be
used to codify and apply ODPs, by representing ODPs in OPPL scripts.

5http://www.co-ode.org/resources/tutorials/bio/
6http://odps.sf.net/
7http://oppl.sf.net

http://www.co-ode.org/resources/tutorials/bio/
http://odps.sf.net/
http://oppl.sf.net

CHAPTER 1. INTRODUCTION 35

Evaluation framework for ontology quality. An evaluation framework has been de-
veloped to assess the relative ontology quality of bio-ontologies in comparison
to each other, based on the ISO 9126 software quality standard [32].

Improved ontological artefacts. Different bio-ontologies have been improved during
this work (GO, Cell Type Ontology –CL– [14], and Cell Cycle Ontology8 –
CCO–) and several OPPL scripts, containing those improvements, have been
generated.

1.5 Thesis outline

Chapter 2 (ODPs for bio-ontologies) provides the background of the work. The chap-
ter describes the current state of bioinformatics and the need for precise seman-
tics and hence bio-ontologies. The notion of ontologies and the different KR
languages that can be used to implement them are also described, focusing on
OWL. The quality problems of current bio-ontologies are reviewed, presenting
the use of ODPs as a solution. Finally, a definition for ODPs and their advantages
for bio-ontology engineering are provided.

Chapter 3 (A Catalogue of ODPs) provides a description of the online catalogue of
ODPs. The catalogue provides a centralised resource for efficiently exploring
and retrieving ODPs, as all the ODPs are consistently described. The chapter
gives an overview of the design and implementation of the catalogue.

Chapter 4 (Ontology PreProcessor Language) describes OPPL, a scripting language
for executing scripts that change the axiomisation of OWL ontologies, and there-
fore able to encapsulate ODPs in OPPL scripts and apply them in OWL ontolo-
gies.

Chapter 5 (Evaluation framework) describes the evaluation framework proposed for
testing the results, consisting of ODP quality, ontology engineering, and ontol-
ogy quality.

Chapter 6 (Evaluation results) describes the use cases, thus the application of ODPs
in bio-ontologies, and the results of evaluating such use cases with the evaluation

8http://www.cellcycleontology.org/

http://www.cellcycleontology.org/

CHAPTER 1. INTRODUCTION 36

framework from Chapter 5. The use cases are the following: Upper Level On-
tology ODP9 in CCO, Sequence ODP10 in CCO, Entity-Quality ODP11 in GO,
Selector ODP12 in GO, and Normalisation ODP13 in CL.

Chapter 7 (Conclusions) reviews the whole thesis in the light of the evaluation re-
sults, providing the conclusions, a review of outstanding issues and pointers for
future research.

Appendix A (Public Catalogue of ODPs) is a copy of the online catalogue of ODPs.

Appendix B (Ontology quality values for CL and nCL) provides the detailed val-
ues of the ontology quality evaluation performed in Chapter 6, comparing CL
and nCL.

9http://www.gong.manchester.ac.uk/odp/html/Upper_Level_Ontology.html
10http://www.gong.manchester.ac.uk/odp/html/Sequence.html
11http://www.gong.manchester.ac.uk/odp/html/Entity_Quality.html
12http://www.gong.manchester.ac.uk/odp/html/Selector.html
13http://www.gong.manchester.ac.uk/odp/html/Normalisation.html

http://www.gong.manchester.ac.uk/odp/html/Upper_Level_Ontology.html
http://www.gong.manchester.ac.uk/odp/html/Sequence.html
http://www.gong.manchester.ac.uk/odp/html/Entity_Quality.html
http://www.gong.manchester.ac.uk/odp/html/Selector.html
http://www.gong.manchester.ac.uk/odp/html/Normalisation.html

Chapter 2

ODPs for bio-ontologies

This chapter provides an answer to the research question What are ODPs?

The chapter starts by describing the problems of current bioinformatics, focusing
on the need for precise semantics and the full implementation of a Life Sciences Se-
mantic Web, in Section 2.1. Ontologies are the most efficient and widespread tool
for exploiting precise semantics, but different communities consider different artefacts
to be ontologies, especially regarding expressivity (axiomatic richness) and rigour, as
described in Section 2.2. Ontologies are implemented using KR languages, and the
KR language chosen highly affects the axiomatic richness and rigour of the resulting
ontology. Therefore, Section 2.3 describes different KR languages, focusing on OWL.
Ontologies that have been used to represent life sciences information, bio-ontologies,
are reviewed in Section 2.4. As part of that review the quality problems of current
bio-ontologies are also described in Section 2.4, focusing on lack of rigour and lean
axiomisation. ODPs can be used to better exploit KR languages, therefore improving
the rigour and axiomisation of bio-ontologies: the idea of ODPs is described in detail
in Section 2.6.

2.1 Bioinformatics and the Life Sciences Semantic Web
(LSSW)

2.1.1 Current bioinformatics and the need for precise semantics

Molecular biology techniques have advanced fast since the 1980s, especially DNA
sequencing, and new techniques have appeared, like microarrays. This has resulted
in an exponential growth of data [92, 75]. Bioinformatics provides the techniques to

37

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 38

Figure 2.1: Fragment of the UniProt entry for the protein Q708Y0. In this fragment
the organism in which the protein can be found, the function, subcellular location, and
interactions with other proteins are shown.

manage, store, process, and analyse such data [110].
The molecular biology data is diverse: gene expression data, protein structures,

literature, sequences, etc. The data is processed algorithmically (e.g. sequence align-
ments) and also information is attached to it. The majority of such information is
presented as “annotations” that capture statements about or deduced from the data.
For example, in the case of the protein sequence identified in UniProt1 as Q708Y02,
the information on the annotations includes the organism in which the protein can be
found, the function, subcellular location, molecular interactions with other proteins,
sequence features, articles that back the statements of the annotations, references to
other databases where the same protein appears, etc. The biggest part of that informa-
tion is provided as either natural language statements or links to other databases and
resources (Figures 2.1, 2.2, and 2.3).

One of the biggest assets of the biologists’ community is the information that can
be found on annotations, and therefore biology is considered to be a “knowledge based

1UniProt is a widely used public database that stores protein sequences and their associated annota-
tions [116].

2http://www.uniprot.org/uniprot/Q708Y0

http://www.uniprot.org/uniprot/Q708Y0

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 39

Figure 2.2: Fragment of the UniProt entry for the protein Q708Y0. In this fragment the
sequence features and articles that demonstrate the statements of the annotations are
shown.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 40

Figure 2.3: Fragment of the UniProt entry for the protein Q708Y0. In this fragment the
references to other databases where the same protein appears are shown.

discipline” [18]. This means that, unlike disciplines like physics, where abstract equa-
tions describe complex systems, in biology all the information needs to be captured and
described, usually in the form of annotations that represent the community’s knowl-
edge about an entity or process. Considering that the flow of data (especially high
throughput data) is growing in volume and exponentially faster, the bottleneck for ef-
ficient information management in bioinformatics has shifted from data to annotations
[80].

The sheer quantity and complexity of such knowledge makes it impossible to be
efficiently managed by a scientist using current techniques and data formats. For ex-
ample, a scientist may want to do the following analysis given a concrete protein like
Q708Y0: (1) get the orthologs of the protein for A. thaliana, (2) if any ortholog is
located in the nucleus, get the proteins that interact with such orthologs via phosphori-
lation, (3) get the regulation processes in which those proteins participate, and compare
them. Such analysis is usually done manually, thus a scientist collects the pertinent in-
formation from annotations, manipulates the output of each step to fit the input of the
next step, and after completing all the steps obtains the result. Doing such analysis if,
e.g. there are various proteins in the initial set, becomes too complex to be carried out

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 41

by a scientist, and tracking all the information on each step laborious.
Another problem with the information in bioinformatics, apart from its complexity

and quantity, is that it is generally provided in isolated resources with unique schemas
and different formats [92, 44]. Therefore the integration of information is a difficult
task, as ad hoc tools must be created for integrating concrete resources with their own
schemas. This poses big problems for the biologists. For example, it is difficult to
make queries about this disparate knowledge: a biologist must traverse different re-
sources, collecting the necessary information, in a process that will most probably
provide incomplete results (Figure 2.4).

A considerable part of the information is “buried” in literature, which makes the
situation even worse, as an article needs to be read each time in order to extract the
pertinent information. For example, as many as 30,000 articles have been published in
recent years solely on the subject of cell apoptosis [68]. The problem of information
being computationally “hidden” in resources like articles is so important that a whole
subdiscipline of bioinformatics, text mining, aims at developing reliable techniques for
automatically extracting information from the articles.

Computers, contrary to scientists, are able to do highly complex analysis involving
lots of related but disparate information items, like the analysis described above that
starts with the single protein Q708Y0, but starting with many related proteins. In order
for computers to be able to perform such analysis, the knowledge needs to be properly
codified in them, using precise semantics via KR techniques. Such “knowledge” is not
the same knowledge that scientists hold in their minds, despite being denoted by the
same term. However, it is useful and safe for scientists to assume that it is the same
knowledge, as that allows scientists to delegate to the computer tasks that would be too
complex. Precise semantics makes it possible to delegate the task of performing such
analysis to computers, as the scientist has the guarantee that what he understands is the
same as what the computer “understands”.

The same task-delegation to the computer takes place, with, for example, a com-
puter program that executes some arithmetic operation such as 1979 divided by 29.
The scientist has the guarantee that what he understands by 1979 divided by 29 is the
same as what the computer understands by 1979 divided by 29, and, more importantly,
the result will be the same, the only difference being the time needed to perform the
operation. This is so despite the fact that the knowledge of 1979 divided by 29 is not
the same: in a computer it is a collection of bits in memory, and in the mind of the
scientist it is a complex neurophysiological phenomenon with different implications

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 42

for different scientists (e.g. the resulting number could mean a lot for someone born in
1979 whose age is 29). However, in the same way that different scientists unambigu-
ously agree on the exact meaning of 1979 divided by 29, both the computer and the
scientist agree on the result through the use of a formalism, in this case, arithmetic, that
allows a precise interpretation of what 1979 divided by 29 means. And, more impor-
tantly, different computers agree on the meaning of 1979 divided by 29, which allows
them to exchange and manipulate results without human intervention.

KR languages are an example of the same delegation principle, but using concepts,
in the form of logic, instead of arithmetic [27]. For example scientists and computers
can precisely agree on the meaning (semantics) of the subclass relationship, as the
relationship between two sets where all the instances of one set belong also to the other
set, but not the other way around3. Describing information using a KR language that
has precise semantics, scientists can exploit a feature that computers have and humans
lack: computational “brute force”. For example, given thousands of instances and their
attributes, a computer can work out all the subclass relationships, something difficult
for a scientist. Therefore, precise semantics provide a means for the computational
manipulation of representations of knowledge.

Ontologies are the most common tool for exploiting precise semantics and dele-
gating inferences to the computer. Bio-ontologies (ontologies that describe biological
knowledge) are useful in bioinformatics because there are many concepts in annota-
tions that can (and should) be codified using the precise semantics of a KR language
like OWL, and hence, ideally, be managed as easily as the operation 1979 divided by

29.

2.1.2 Life Sciences Semantic Web

Bio-ontologies are part of the Life Sciences Semantic Web (LSSW) [49], an endeavour
aiming at providing a semantic framework making it possible to efficiently integrate
and manage biological information through the web. Ideally, in a LSSW context, a
biologist should be able to process data and annotations automatically and reliably,
in the same way that is already possible, for example, with sequences and sequence
alignment algorithms using the tools that exploit such algorithms. This means that, in
the example of Figure 2.4, a simple query and exploitation of transitivity would answer
the scientist’s complex question. Such actions could be implemented, for example,

3What the computer “understands” is the structure resulting from combining various sets, regardless
of the names given to the instances or the sets: the names are only useful for humans.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 43

..... A is part of B

.....................

......X has part Y
M has parts only M and N ...
.....
.......F appears only in H
.......

.....

....................
PR1 is ortholog of PR2 ...
.....

.....

....................

........ B is part of C ...

......

Is any ortholog of PR1 located in C?

.....

....................

...PR 2 is located in A ...

.......

Figure 2.4: Information is disperse in bioinformatics resources. For example, if a
biologist wants to know whether an ortholog of PR1 is located in C, he will have to
go through the following path: he will realise that PR2 is an ortholog of PR1, then he
will go to another resource and get the location of PR2 (A), then he will go to another
resource that states that A is part of B, and finally, as there is another resource that
states that B is part of C, he will answer his query with yes.

in an automatic digital assistant that would be able to perform analysis like the one
described in Section 2.1.1, starting with the protein Q708Y0 [13].

The LSSW is an application of the very technology that has been proposed to create
the next generation of the WWW, the Semantic Web. The Semantic Web is one of
the activities of the World Wide Web Consortium4 (W3C), an organisation set up to
recommend standards for an open and interoperable WWW. The Semantic Web vision5

proposes a web made of computationally processable statements, instead of the current
syntactic web made of documents [16]. In other words, documents like HTML pages
are inappropriate containers for concepts, as it is necessary to process the document
to retrieve a concept, and the Semantic Web proposes a web made of concepts instead
of documents. This would result in a world wide network of interlinked concepts and
data that could be exploited by human users and automated agents alike, exploiting
the already described principle of delegating to the computer the task of performing
complex inferences, via precise semantics.

Such a Semantic Web could be used for finding the exact information needed, in
queries like find the names of all the mammal species that are predators, live in Africa,

4http://www.w3.org/
5http://www.w3.org/2001/sw/

http://www.w3.org/
http://www.w3.org/2001/sw/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 44

Figure 2.5: The Semantic Web stack. Each layer adds new functionalities but also
exploits the functions of the layer bellow: for example, RDF exploits XML function-
alities but adds a data model. XML, RDF, SPARQL, RDFS and OWL are explained in
Section 2.3.

are not lions, and have been mentioned in the New York Times by any author who

has been working there for more than 5 years. In the current syntactic web such a
general query is impossible: a user must traverse through different resources and col-
lect/compare the information. Even a simple query like is Rome located in Italy? is
difficult to do automatically. The Semantic Web could also be used by an automatic
agent to, for example, book a journey that fits certain criteria the user has previously
entered: dates, itinerary of cities, maximum prices, hotels, events, etc. Using such an
agent, the users save time by not performing tedious and meaningless tasks. The key
to the Semantic Web is to publish data in a machine processable manner, for example,
by representing data through ontologies. In this manner, the agent mentioned above
would be able to exploit automated reasoning using different ontologies (e.g. a hotels
ontology, an events ontology, etc.) and deliver the needed result automatically.

The Semantic Web is based in a collection of standards that extend the current web
technologies, instead of replacing them, in the Semantic Web Stack, which is shown in
Figure 2.5 (Image taken from the Wikipedia6).

6http://en.wikipedia.org/wiki/Semantic_Web_Stack

http://en.wikipedia.org/wiki/Semantic_Web_Stack

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 45

Even though Semantic Web technologies have not been completely adopted in life
sciences, the use of such technologies is growing [49]. Biology is an ideal test-ground
for Semantic Web technologies, as biological information presents a combination of
attributes not found in other fields that make it a demanding use case [110, 124]. Bio-
logical information is highly complex, with many different types of information about
the same entity, and it is stored in large volumes; it grows fast and it rapidly changes;
it is distributed in different resources and hence represented with disparate schemas; it
needs to be represented at the highest resolution possible. On the other hand, there is
a long tradition of classification of entities in biology [110], dating back to Linnaeus,
which can be seen as a precursor of today’s bio-ontologies discipline. One of the latest
incarnations of such tradition is the growing group of scientists that are ready to com-
putationally codify biological information (an effort already committed to generating
annotations), a situation not found in other disciplines. This is why the W3C created
the W3C Semantic Web Health Care and Life Sciences Interest Group7 (W3C HCLS),
being aware of the potential of life sciences as a demanding test-case for the Semantic
Web technologies.

2.2 Ontologies

The original meaning of the term “Ontology” refers to the philosophical discipline that
identifies the kinds of things that actually exist. However the same term is used in
computer science to refer to a computational representation of a domain of discourse
by a community8 [9]. The most cited definition for an ontology is “a formal, explicit
specification of a shared conceptualisation” [111], but what is an ontology remains a
controversial issue. As mentioned, ontologies have different aspects or axes that can
be used to analyse them: rigour, axiomatic richness and usage are the most important
ones. Different communities emphasise different points in each of those axes, therefore
producing artefacts that are considered like ontologies by one community and not by
other communities.

Rigour allows the scientists to use a KR formalism to share the meaning of con-
cepts with the computers in a precise way, therefore making it possible for scientists to
delegate to the computer analyses that are too big or complex, via inferences. The axis

7http://www.w3.org/2001/sw/hcls/
8Some authors make a difference between the term “Ontology” (uncountable, starting with upper

case) for the philosophical discipline and “an ontology” (singular, starting with lower case) for the
computational artefact.

http://www.w3.org/2001/sw/hcls/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 46

Catalog/ID

Terms/glossary

Thesauri
"narrower

term"

Informal is-a

Formal is-a

Formal
instance

Frames
(properties)

Value
restriction

General
Logical

constraints

Disjointness,
Inverse, ...

Figure 2.6: Ontology spectrum. Rigour increases from left to right: on the left extreme
simple lists of terms can be found, and on the right extreme fully rigorous ontologies
that exploit precise semantics.

Data pooling 1

Indexing/retrieval 2

Controlled vocabulary

Structured controlled vocabulary (hierarchy)

Aggregation/statistical analysis 3

Multiple views 4

Single subsumption hierarchy

Multiple hierarchies

Combinatorial concepts Compositional classes on demand5

Figure 2.7: Feature escalator. The richer an ontology, the wider the range of uses: a
controlled vocabulary is used for data pooling, whereas an ontology with classes that
can be combined in rich ways (e.g. an OWL ontology) can be used for more tasks
besides data pooling (e.g. generate multiple views of the data).

of rigour was fist represented by the “ontology spectrum” [123] (Figure 2.6). On one
extreme we can find simple lists of terms and on the other fully rigorous ontologies.

The axes of axiomatic richness and usage can be seen in the “feature escalator”, first
described in [73] (Figure 2.7). Axiomatic richness allows the scientists to delegate the
management of a big portion of his domain of knowledge to the computer: the richer
the ontology, the more the user can delegate to the computer. Therefore, the richer
an ontology, the more functions it can perform at the same time, especially if such
expressivity is backed by a rigorous formalism.

Considering the needs of each community, the requirements that an ontology should
fulfil will stand in different points of those axes, resulting in a demand for an ontology
with a concrete set of capabilities. The capabilities of an ontology largely depend on
the KR language used to implement it.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 47

2.3 Knowledge Representation (KR) languages

KR languages are diverse but this section will be focused only on the ones that are
Semantic Web oriented (XML, RDF, RDFS, and OWL) or biology oriented (OBO
format), due to the context of this thesis. XML is not strictly a KR language but it is
included in this section because it forms the implementation base for RDF, RDFS and
OWL in the Semantic Web9 (Figure 2.5). KR languages differ mainly in the areas of
semantics, syntax, expressivity and automated reasoning [10]:

Semantics: What well formed statements mean, thus the set of concrete situations that
are consistent with a sentence. Precise semantics allows unambiguous interpre-
tation of the sentences, by the computer and by the human users.

Syntax: The set of rules that are used for creating a well formed statement. Differ-
ent statements can express the same situation when they are semantically inter-
preted: syntax is completely independent of semantics.

Expressivity: The ability of the language to distinguish different situations. For ex-
ample, a language with simple cardinality restrictions, like the first version of
OWL, is less expressive than a language with Qualified Cardinality Restrictions
(QCRs), like OWL 2 (Figure 2.8). A simple cardinality restriction would be,
for example, the following axiom: HasAppendix max 5 owl:Thing. Having
owl:Thing as filler means that any class can be the filler. However, a QCR
would read as follows: HasAppendix max 5 finger. The QCR allows us to
distinguish between an entity that has at most 5 fingers as appendices (a hand:
HasAppendix max 5 finger) and an entity that has, for example, at most 5
tentacles as appendices (a mutant octopus: HasAppendix max 5 tentacle).
However, with the simple cardinality restriction, both entities have at most 5
appendices that are fingers, tentacles or whatever (owl:Thing). Expressivity
is related to both syntax and semantics. For example, if a language’s syntax
allows the expression of minimum cardinality and negation, maximum cardinal-
ity can be expressed if the semantics of the language are such that there is an
equivalent maximum cardinality equivalent to the negated minimum cardinality
(e.g. not HasAppendix min 4 is equivalent to HasAppendix max 3). There is

9RDF, RDFS and OWL are modelling languages and they do not depend on XML (they can be
serialised –written in files– using any other syntax), but their most used implementation and the imple-
mentation for the Semantic Web heavily depends on XML.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 48

HasAppendix max 5 OWLExpression

HasAppendix max 5 finger

HasAppendix max 5 tentacle

HasAppendix max 5 owl:Thing

?

?

Figure 2.8: Different levels of expressivity in OWL. A QCR (top) makes further dis-
tinctions compared to a simple cardinality restriction (bottom).

an intuitive albeit not strictly linear expressivity gradient that goes from XML
(least expressive), to RDF, to RDFS, and finally to OWL (most expressive) [9].
Expressivity is closely related to computational tractability, which measures the
amount of resources needed for obtaining an answer: the more expressive a lan-
guage, the less tractable [27]. Expressivity is also related to decidability. There
could be a question formulated in a KR language, depending on its expressivity,
for which there is no algorithm that provides a correct answer, and hence the
question is said to be undecidable.

Automated reasoning: Answering some semantic based query, such as determining
if one statement follows from another or if there is a consistent model according
to what we have stated. Automated reasoning makes implicit knowledge explicit,
not new knowledge. Thus, axioms that are entailed by the stated axioms are
shown to the ontologist.

Depending on different factors like competency of ontology curators, resolution
and size of domain knowledge, knowledge retrieval requirements, etc., a given KR
language will be more appropriate than others in one or more of the mentioned four
areas. OWL is one of the most suitable KR languages for biological knowledge rep-
resentation [108], and its use is rapidly expanding within and outside bioinformatics
[50], so it is the language of choice for implementing the ODPs presented in the online
catalogue of ODPs. Therefore it will be explained in more detail than the other KR lan-
guages in this section (XML, RDF, RDFS and OBO). A detailed explanation of OWL

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 49

is also justified because the aim of this research is to make an expressive KR language
like OWL more usable for bio-ontologists, so an overview of such expressivity must
be provided in order to judge whether the proposed solution (usage of ODPs) fulfils
that aim.

2.3.1 Extensible Markup Language (XML)

XML10 is an official W3C recommendation11 for defining markup languages. Thus,
using XML one can define a concrete format to create structured documents that con-
form to a given set of rules, using XML Schema12. XML does not impose any seman-
tics to the defined documents, but it imposes a concrete structure (a tree of document
elements), so it is widely used for representing semi-structured information.

In bioinformatics, many databases provide entries in XML, and languages like
SBML13 (Systems Biology Markup Language) have been developed using XML. XML
provides the syntactic base for RDF, RDFS, and OWL, which can be, and usually are,
codified as valid XML documents. Using XML as the base makes the implementa-
tion of tooling for such languages more efficient than if they were codified in different
formats. RDF, RDFS and OWL exploit XML functionalities and they add their own
semantics, RDF on top of XML and RDFS and OWL on top of RDF (Figure 2.5).

2.3.2 Resource Description Framework (RDF)

RDF14 was conceived to represent metadata in the Semantic Web, and it is used to
describe resources and how they relate to each other. The model behind RDF is based
in the subject-predicate-object triple pattern (Figure 2.9): a subject relates to an object
via a predicate. The subject is described by the predicate (the property) and the object
(the value that such property takes). For example in RDF we can make statements
like this thesis is authored by Mikel Egaña, where this thesis is the sub-
ject, is authored by the predicate and Mikel Egaña the object: is authored by

Mikel Egaña describes the entity this thesis.
A “graph” is obtained by combining these triples (Figure 2.10). RDF uses URIs15

10http://www.w3.org/XML/
11http://www.w3.org/TR/2004/REC-xml11-20040204/
12http://www.w3.org/XML/Schema
13http://sbml.org
14http://www.w3.org/RDF/
15URIs, being part of the base of the internet, have been reused for identifying entities in RDF, RDFS

and OWL in order for such languages to exploit capabilities available in the Semantic Web Stack. The

http://www.w3.org/XML/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/XML/Schema
http://sbml.org
http://www.w3.org/RDF/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 50

this thesis Mikel Egaña

is authored by

Figure 2.9: RDF triple. A subject (this thesis) is linked to an object (Mikel Egaña)
via a predicate (is authored by).

this thesis Mikel Egaña

authored by

Computer
science

presented
in faculty

Univ. of
Manchesterpart of

Figure 2.10: An RDF graph is obtained by combining RDF triples. The same entity
can be the subject or the object of different triples, e.g. this thesis is the subject of
two triples.

to identify entities (subjects, predicates or objects), so graphs can be combined over
the internet. RDF is used in many resources, and there is a language called SPARQL16

that offers a powerful, simple and flexible way of querying RDF graphs.

2.3.3 Resource Description Framework Schema (RDFS)

RDF Schema17 provides constructs for grouping RDF resources in classes. A resource
belongs to a given class (rdfs:Class) via the rdf:type construct and classes can
be subclasses of other classes in a hierarchy, using the rdfs:subClassOf construct.
RDFS also provides constructs for creating property hierarchies (rdf:Property and
rdfs:subPropertyOf), and other constructs. RDFS is the first step towards an ontol-
ogy language [9], as it allows the expression of general attributes of the sets (classes)
of entities rather than only working with concrete entities in RDF triples. RDFS uses
URIs to identify entities.

“fragment” of the complete URI is usually used to render OWL entity names in tools like Protégé:
e.g. from the entity with the URI http://www.gong.manchester.ac.uk/go.owl#GO 0000001, the
fragment GO 0000001 is used to render the class name.

16http://www.w3.org/TR/rdf-sparql-query/
17http://www.w3.org/TR/rdf-schema/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-schema/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 51

2.3.4 Web Ontology Language (OWL)

OWL is a W3C official recommendation and it is being developed by the W3C OWL
Working Group18, aiming at providing a powerful and expressive KR language for
publishing ontologies on the WWW. OWL ontologies are designed also to be part of
software. For example, the OWL API19 (Application Programming Interface) allows
the building of applications that make a heavy use of ontologies as data models, and
it offers the possibility of directly using reasoners such as Pellet [100] and FaCT++
[115]. Such API has been used on the creation of ontology editors like Protégé 420, an
OWL 2 focused successor of Protégé 321. There are other OWL ontology editors like
Swoop22 or TopBraid Composer23.

2.3.4.1 OWL syntax and semantics

As mentioned, KR languages have four components: syntax, semantics, expressivity
and automated reasoning. This section provides a brief overview of the syntax and
semantics of OWL. The full expressivity, automated reasoning and other technical de-
tails of OWL are out of the scope of this thesis; for more information the reader should
refer to the official W3C website about OWL24 or a tutorial like the one provided by
the CO-ODE group25. The overview that follows is aimed at providing a broad idea of
OWL’s design and capabilities; more about the OWL’s expressivity can be appreciated
by exploring the ODPs in the online catalogue of ODPs. In order for the reader to be
able to understand some OWL semantics examples, its syntax is first reviewed.

OWL can be expressed in a range of syntaxes, divided in two groups: computer-
readable syntaxes, designed for efficient parsing of OWL files by computers, and
human-readable syntaxes, designed for maximum readability by human users. The
most common computer-readable syntax is RDF/XML26, although OWL/XML27 is
also used. The most common human-readable syntax is the Manchester OWL Syntax

18http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
19http://owlapi.sourceforge.net/
20http://www.co-ode.org/downloads/protege-x/
21http://protege.stanford.edu/
22http://code.google.com/p/swoop/
23http://www.topbraidcomposer.com/
24http://www.w3.org/2004/OWL/
25http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial-p4.0.pdf
26http://www.w3.org/TR/rdf-syntax-grammar/
27http://www.w3.org/TR/owl-xmlsyntax/

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://owlapi.sourceforge.net/
http://www.co-ode.org/downloads/protege-x/
http://protege.stanford.edu/
http://code.google.com/p/swoop/
http://www.topbraidcomposer.com/
http://www.w3.org/2004/OWL/
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial-p4.0.pdf
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/owl-xmlsyntax/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 52

<owl:Class rdf:about="#nucleus">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#part_of"/>
<owl:someValuesFrom rdf:resource="#cell"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Figure 2.11: RDF/XML representation of the OWL class nucleus. The class has the
restriction part of some cell as a superclass.

nucleus subClassOf part_of some cell

Figure 2.12: MOS representation of the OWL class nucleus. This representation is
equivalent in its semantics to the one of Figure 2.11.

(MOS) [57], which is used in Protégé 4. For example, the representation of an hypo-
thetic OWL class called nucleus, with a restriction along the part of property to the
class cell (a nucleus must have at least one part of relationship to a cell), is shown in
RDF/XML syntax in Figure 2.11 and in MOS in Figure 2.12.

OWL has precise semantics, provided by Description Logics (DL), based in enti-
ties (identified by their URI) and axioms. Axioms are used to make statements about
the domain of knowledge, relating entities. Entities can be of three kinds (Figure
2.13): individuals, classes or properties. Individuals are the objects from the domain
of knowledge, classes are sets of individuals, and properties link pairs of individuals
in relationships. The TBox (Terminological Box), formed by the classes, provides the
vocabulary that must be used to describe the knowledge domain. The ABox (Asser-
tional Box), formed by the individuals, asserts facts about the knowledge domain using
such vocabulary.

Class

Instance

Instance

Class

Instance

Instance

Instance

property

property

Figure 2.13: OWL entities and their role in the OWL model. A Class (circle) is a set
of individuals (diamonds). Properties link individuals in binary relations (arrows).

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 53

Chloroplast

Organelle

Cell part

Chloroplast

is a

Organelle

is a

Cell part

Mitochondrion Ribosome

is ais a

Cytoplasm Cell membrane

is a
is a

Figure 2.14: OWL classes and subclasses. The set of individuals Chloroplast is a
subset of the set Organelle, which is a subset of Cell part (top). There are other or-
ganelles that are not chloroplasts (e.g. ribosomes), therefore Chloroplast is a subclass
of Organelle, and as there are other cell parts that are not organelles (e.g. cytoplasm),
Organelle is a subclass of Cell part. An is-a hierarchy is built by combining dif-
ferent subsumption relationships (bottom).

Individuals are grouped in categories, forming classes: a class is a set of individuals
that share some attributes. A class is a subclass of another class if, and only if, all the
individuals of the subclass are also individuals of the superclass, but not all the indi-
viduals of the superclass are individuals of the subclass. The superclass subsumes the
subclass. Therefore categories become subcategories of (are subsumed by) other cat-
egories: the class called Chloroplast, containing all the chloroplast individuals, is a
subcategory of Organelle (all the chloroplasts are organelles but the class Organelle
contains other types of individuals, like Nucleus, Mitochondrion, etc.). Combining
all the class-subclass relationships of the ontology, the well known and intuitive is-a
hierarchy or taxonomy is built (Figure 2.14).

The attributes of a given class apply to all of its individuals. To define such at-
tributes, the relationships that the individuals should have are defined, in terms of how
many relationships and to which individuals. Therefore the attributes of classes are

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 54

usually restrictions on the relationships that the individuals have, and the restrictions
limit the individuals that belong to the class. A restriction like part of some cell

is composed of three elements: the property (part of), the quantifier (some), and
the filler (cell). Such restriction can be read as at least one relationship along the

part of property to an individual of the class cell . The some quantifier is known
as “existential” (the example would be an “existential restriction”): the other OWL
quantifiers are only or “universal” (if there is a relationship with the given property it
must be to an individual of the filler class, or nothing else), exactly (exact number
of relationships), min (minimum number of relationships), max (maximum number of
relationships), and value (a relationship to a concrete individual).

Restrictions and named classes can be combined using operators (not, and, or) to
build highly expressive attributes or “class expressions”. For example the filler of a re-
striction can be another restriction or a combination of various restrictions with named
classes, or even restrictions with restrictions as fillers, creating nested restrictions. The
complexity that can be achieved in class expressions is one of the strong points of
OWL, and it allows the building of classes “on the fly” by combining other classes
and restrictions. For example, the following restriction can be read as part of at least

one thing that participates only in reproduction and feeding (an existential restriction
that has another universal restriction as its filler, which has the union of two named
classes as its filler): part of some (participates in only (reproduction or

feeding))28.
A class expression is an anonymous class (a class without URI) formed by the

individuals that fulfil its conditions. Therefore, the class being defined using the class
expression can be a subclass of it (e.g. nucleus subClassOf part of some cell)
or equivalent to it (e.g. nucleus equivalentTo part of some cell).

The subClassOf and equivalentTo relationships to anonymous classes (class
expressions) are known as “necessary” and “necessary and sufficient” conditions, re-
spectively. A necessary condition (e.g. nucleus subClassOf part of some cell)
is a condition that it is necessary to fulfil but is not enough in itself to assume that an
individual belongs to a class: all the nuclei are part of cells, and being part of a cell is
a necessary condition for being a nucleus, but if we find an individual that is part of a
cell, that fact on its own is not enough to consider the individual as a nucleus (it could
be a chloroplast, which are also part of cell) (Figure 2.15). A necessary and sufficient

28Note the difference between the natural language “and” (as in reproduction and feeding) and the
OWL or (as in reproduction or feeding): in both cases their meaning is the union of sets. In OWL,
and means the intersection of sets. This leads to confusion on newcomers to OWL, as pointed in [85].

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 55

Nucleus Cell
part_of

part_of

part_of

part_of

part_of

Figure 2.15: Necessary condition on the class nucleus made with an existential re-
striction (nucleus subClassOf part of some cell). The named class nucleus is
a subclass of the anonymous class (doted circle) formed by the individuals that have at
least one part of relationship to an individual of the named class cell.

condition (e.g. nucleus equivalentTo has part some nucleolus) is a condition
that suffices to determine that an individual belongs to a class: having a nucleolus is
a fact that suffices to identify an organelle as nucleus, because, as nuclei are the only
organelles with nucleoli, if we find an organelle which has a nucleolus as one of its
parts we can assume it to be a nucleus (Figure 2.16).

The properties that link individuals in relationships (and therefore can be used in
restrictions in class expressions) can be assigned different characteristics: transitive,
functional, inverse functional, symmetric, asymmetric, reflexive and irreflexive. For
example flagging a property as transitive means that if individual B is related to indi-
vidual C and individual C is related to individual D, then individual B is also related to
individual D. In another example, if a property is flagged as functional and individual
A is related using such property to individuals B and C, it will be assumed that B and
C are the same individual, thus if B and C are stated to be different in another axiom,
an inconsistency will be flagged by the reasoner.

Properties can be arranged in hierarchies using subPropertyOf axioms29: if a
property links two individuals in a relationship, then they are also related by the super-
property (but not the other way around, as in the subsumption between two classes).
Domain and ranges in properties define to which classes the properties should be ap-
plied.

Properties that link individuals are called Object Properties, but there is another

29Properties can also be disjoint or equivalent, they can be coupled in property chains, and they can
be assigned inverse properties.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 56

Nucleus

Nucleolus
has_part

has_part

has_part

has_part

has_part

Figure 2.16: Equivalent condition on the class nucleus made with an existential re-
striction (nucleus equivalentTo has part some nucleolus). The named class
nucleus is equivalent to the anonymous class (doted circle) formed by the individ-
uals that have at least one has part relationship to an individual of the named class
nucleolus: note that both the anonymous class and nucleus have exactly the same
extent of individuals.

type of properties, called Datatype Properties, that can be used to link individuals to
literal values (e.g. strings, dates, numeric values, etc.). OWL offers the possibility of
adding annotations that are not processed by the reasoners, for storing human readable
information, using Annotation Properties, the third and last type of property found in
OWL. Entities (classes, properties or individuals) or axioms can be annotated with
annotation values. Different types of annotation properties can be used: the RDFS
annotation properties (rdfs:label, rdfs:comment, etc.), Dublin core properties30,
or any properties created by the ontologist.

The identity of named entities in OWL can be expressed by asserting that a given
entity is different from other entities, using sameAs and differentFrom for individu-
als and disjointFrom and equivalentTo for classes. OWL does not work with the
Unique Name Assumption (UNA), thus the fact that two entities have different names
(URIs) does not imply that they are different entities: they could be equivalent classes
or the same individual. However entities with the same URI are the same entity.

Another key assumption of OWL is the Open World Assumption (OWA). The OWA
means that facts that are not asserted to be true are assumed to be unknown rather than
false. The following assertion is used as an example of how open world and closed
world systems differ: DNA is located in the nucleus. In a closed world system like a
database, when the system is queried to know whether DNA is located in mitochondria,
the answer is no, thus the system answers with negation as failure. However, in an

30http://dublincore.org/

http://dublincore.org/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 57

OWL based system, the answer would be unknown: it could be that DNA is located
in the nucleus and also other parts of the cell (e.g. mitochondria), as the only stated
knowledge is that DNA is located in the nucleus. In OWL, negation has to be explicitly
stated: it has to be asserted that DNA is not located in mitochondria (and make nucleus
and mitochondria disjoint, if they were not, due to the lack of UNA). Therefore the
closed world assumption in OWL can be achieved, but it must be done so explicitly.

OWA and the lack of UNA in OWL result in a modelling process that can be
thought of as “trimming” a first ontology where everything is possible and every entity
is equal. The ontologist trims the ontology by limiting the possibilities: entities are
asserted to be different, e.g. with differentFrom, and axioms that limit the possible
facts are introduced, e.g. by using restrictions. The ontologist trims the all-possible
ontology until a satisfactory representation of the domain of knowledge is reached.

Precise semantics and a limited expressivity in OWL allow sound, complete and (in
many cases) efficient automated reasoning. Using automated reasoning the following
tasks can be performed:

DL queries: Anonymous classes can be defined and the reasoner can answer how the
classes and individuals of the ontology relate to those classes, which is equivalent
to “asking” questions about the knowledge represented in the ontology. For
example we can define the query part of some cell (which represents the
set of individuals that have at least one part of relationship to an individual
from the class cell) and ask the reasoner to retrieve its named superclasses
(and ancestor classes), equivalent classes, subclasses (and descendant classes),
or individuals.

Subsumption hierarchy: The reasoner infers the structure made of the class-subclass
relationships, even if not all of them are explicitly stated. For example if the
class organelle has the restriction part of some cell as an equivalent condi-
tion (anything that has at least one part of relationship to a cell is an organelle)
and the class mitochondrion has the same restriction as a superclass condition
(all the mitochondria have at least one part of relationship to a cell), the class
mitochondrion will be inferred to be a subclass of the class organelle (if all
the mitochondria are part of a cell, and anything that is a part of a cell is an
organelle, then a mitochondrion is an organelle). Further subsumption relation-
ships (e.g. subclasses of the class mitochondrion, like plant mitochondrion

and animal mitochondrion) are also inferred, rebuilding the whole taxonomy.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 58

Realisation: Given an individual with relationships, the reasoner can infer to which
named classes it belongs. For example if the individual Organelle1 has a rela-
tion part of cell, it will be inferred to be a member of the class organelle.

Consistency checking: The reasoner can check whether the ontology is consistent,
thus there are no contradictions. An inconsistent ontology does not have any
model, thus, there is no interpretation that satisfies every axiom of the ontol-
ogy. The reasoner can also check whether classes in the ontology are satis-
fiable: an unsatisfiable class cannot have any instances in any model of the
ontology, thus it is interpreted as an empty set in every model of the ontol-
ogy [58], and flagged as a subclass of owl:Nothing. For example if the class
GeneticMaterial is defined as subClassOf part of some mitochondrion

and nucleus, and mitochondrion and nucleus are disjoint, the reasoner will
flag the class GeneticMaterial as unsatisfiable, as there cannot be any instance
of GeneticMaterial. Unsatisfiable classes usually indicate an error in the mod-
elling.

OWL semantics is monotonic, and hence new axioms can be introduced and the
prior axioms must remain valid. Thus additional axioms can result in new inferences,
but never cancel the prior inferences: e.g. if a class is flagged as unsatisfiable after
adding new axioms, that is a new inference and does not invalidate prior inferences,
although it indicates a likely error in the modelling [84].

An OWL ontology can reuse descriptions in other ontologies, being able to re-
fer to the entities of the other ontologies via axioms (the other ontologies are “im-
ported” by the ontology). For example, in the class definition nucleus subClassOf

ro:part of some cl:cell, there are two references to entities of other ontologies:
part of (ro ontology) and cell (cl ontology).

2.3.4.2 OWL in relation to RDF and RDFS

As mentioned, compared to RDF, OWL and RDFS are designed as ontology languages.
Whereas RDF represents metadata, OWL and RDFS are aimed at representing knowl-
edge about those metadata. In the same perspective, RDF can be seen as an OWL
ontology with only individuals. An RDF model about a concrete family would have,
for example, some names (subjects) and some relationships (predicates) (Figure 2.17):
Adams family has parent John, Adams family has child Mary, Adams family

has child Simon, etc. However, the knowledge about the usual composition of a

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 59

Adams_family

John

has_parent
Mary

has_child

Simonhas_child

Figure 2.17: RDF graph describing a concrete family. The adams family has a parent
called John, and two children, Simon and Mary.

catholic family (e.g. a male father, a female mother and at least 5 children) should be
encoded in OWL, as it describes classes of entities with general attributes (the class
composed by the set of catholic families). The class catholic family would have
different restrictions stating the number of children, the types of parents, etc. (Figure
2.18). Such restrictions should be added as superclasses, as not all the families with
such attributes are catholic, but all the catholic families have such attributes. John

would be an individual of the class male, Simon would be an individual of the class
child, and the instance Adams family would be classified (or not) as belonging to the
class catholic family (Figure 2.19).

OWL, in comparison with RDFS, provides a richer vocabulary for modelling and
precise semantics, which comes from restricting the complete syntactic freedom of
RDFS, e.g. in OWL (DL) a cardinality restriction cannot be applied to the subsumption
relationship.

OWL (RDF/XML) includes RDFS and RDF elements in its syntax, and OWL,
RDFS and RDF are intended to be syntactically compatible; a tool able to process
RDF serialised in XML should be able to process OWL serialised in RDF/XML, albeit
not considering its semantics, thus treating an OWL model as an (unnecessarily convo-
luted) RDF graph (Figure 2.5). For example, in Figure 2.11, there are RDFS constructs
like <rdfs:subClassOf>, RDF triples can be noted, and everything is valid XML.

2.3.4.3 OWL and LSSW

OWL was designed for the Semantic Web, and four of its features stand out:

OWL is self-descriptive: The data and the schema of the data are delivered together
[92], so data from different resources can be integrated without schema recon-
ciliation, albeit semantic reconciliation may be necessary.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 60

Class: catholic_family
SubClassOf:

has_parent only (female or male),
has_parent exactly 1 female,
has_parent exactly 1 male,
has_parent exactly 2 (female or male),
has_child min 5 child

Figure 2.18: MOS rendering of the OWL class catholic family. The class
catholic family is a subclass of the anonymous class made of the families that have
exactly one female parent, exactly one male parent, exactly 2 parents, in case of having
a parent he or she must be from the class female or the class male (or none), and they
have a minimum of 5 relationships to the individuals of the class child.

catholic_family

Adams_familiy

???

Figure 2.19: The OWL class catholic family (left) and the individ-
ual Adams family (right). The individual Adams family will be (or not) inferred to
be a member of the class catholic family, which includes all the families that match
the attributes defined in Figure 2.18.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 61

Open World Assumption: To work in the Semantic Web, we need to assume that
the knowledge we hold is necessarily incomplete: more knowledge from new
resources will be most probably added at later stages to our ontology.

Absence of Unique Name Assumption: In the Semantic Web it could be that differ-
ent entities are equivalent, e.g. different resources could have assigned the names
“cat”, “gato” and “katua” to the same concept, Felix catus. Therefore the lack of
UNA is important to make the Semantic Web work.

URIs: URIs globally identify resources on the internet and URLs locate them. OWL
uses URIs to identify entities, so the already existing internet infrastructure for
URIs can be exploited.

The features that make OWL suitable for using it on the implementation of the
Semantic Web also make it suitable for representing the current distributed biological
knowledge in the LSSW. For example the Open World Assumption takes into account
the inherent incompleteness of biological knowledge, as new resources and data need
to be continuously added to the existing ontologies. Also, the importing mechanism
and the fact that OWL is self-descriptive fits with the distributed nature of biological
knowledge, with independent resources publishing their own data. Finally, URLs can
be used to identify entities from the biological knowledge domain [49].

On the other hand, OWL is limited in some aspects with regards to expressing
biological knowledge, as described in [108]. For example OWL cannot represent re-
lations of higher arity than 2, there are no notions for exceptions, temporal automated
reasoning cannot be applied, etc. However, even with limitations on what can be ex-
pressed, OWL presents what is a currently optimal balance between expressivity and
tractability, it is a standard (facilitating interoperability), and it is included in the Se-
mantic Web Stack, offering many functionalities “for free”. The development of OWL
is active, and new features of expressivity are expected in the future.

2.3.5 Open Biomedical Ontologies (OBO) format

The OBO format31 was first designed for implementing the GO, but it has become the
de facto KR language for implementing many bio-ontologies. However, it is not used
as a KR language outside the life sciences domain.

31http://www.geneontology.org/GO.format.obo-1_2.shtml

http://www.geneontology.org/GO.format.obo-1_2.shtml

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 62

The OBO format was originally developed as a flat file format. Although there is
a XML based syntax for OBO32, the most used syntax is the flat file. A considerable
bio-ontologists community has evolved around OBO, creating ontology editors like
OBO-Edit [24], Phenote33 or COBrA-CT34, and APIs like ONTO-PERL35 or GO-
PERL36.

OBO does not map to any precise semantics [72], but OBO to OWL translations
have been implemented [46] and DL automated reasoning has been applied with cer-
tain adaptations of the OBO ontologies [73, 45]. Besides automated reasoning through
adaptations to OWL, other types of algorithmic processing of OBO ontologies have
been implemented, like the OBOL project (OBO Language) [77] and the OBO-Edit
reasoner37. OBOL exploits the grammar implicit in GO term names to infer new re-
lationships. The OBO-Edit reasoner performs an already defined set of inferences, or
“rules” (e.g. “Rule 1: transitivity”), thus the inference is implemented in the logic of
the program instead of using already existing (and thoroughly tested) reasoners that
offer a wider range of inferences, like Pellet or FaCT++. For example, the OBO-Edit
reasoner cannot execute a query of arbitrary complexity, or check the consistency of
the whole model, as it does not exploit any formal semantics. Therefore, the OBOL
and OBO-Edit attempts cannot be considered as examples of automated reasoning.

In comparison to OWL, OBO has a limited expressivity. For example, OBO does
not allow for nested expressions, and the distinction of necessary and necessary and
sufficient conditions is not present, nor the distinction of properties (Object Properties,
DataType Properties, and Annotation properties).

2.4 Current bio-ontologies

The use of bio-ontologies is “mainstream” now in bioinformatics, as shown by events
like the bio-ontologies Special Interest Group38 at the international conference of In-
telligent Systems for Molecular Biology (ISMB) or institutions like the the National
Center for Biomedical Ontology39 (NCBO). Most of the current bio-ontologies are

32http://www.geneontology.org/GO.format.shtml#OBO-XML
33http://www.phenote.org/
34http://www.aiai.ed.ac.uk/project/cobra-ct/
35http://search.cpan.org/˜easr/ONTO-PERL-1.13/
36http://search.cpan.org/˜cmungall/go-perl/
37http://oboedit.org/docs/html/The_OBO_Edit_Reasoner.htm
38http://www.bio-ontologies.org.uk/
39http://bioontology.org/

http://www.geneontology.org/GO.format.shtml#OBO-XML
http://www.phenote.org/
http://www.aiai.ed.ac.uk/project/cobra-ct/
http://search.cpan.org/~easr/ONTO-PERL-1.13/
http://search.cpan.org/~cmungall/go-perl/
http://oboedit.org/docs/html/The_OBO_Edit_Reasoner.htm
http://www.bio-ontologies.org.uk/
http://bioontology.org/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 63

gathered under the Open Biomedical Ontologies Foundry [102], a foundry that sets
design principles to make the member bio-ontologies non-overlapping, of high qual-
ity and interoperable40. Current bio-ontologies are used to fulfil different tasks [109],
listed as follows:

Reference ontology: An ontology can act as a reference of the domain knowledge,
since it has been built through a consensus in order to obtain a canonical model
of such domain.

Controlled vocabulary: An ontology is a defined set of terms that users commit to
in order to transmit information. A controlled vocabulary can be regarded to be
delivered by an ontology: an ontology is a structure where objects are classified
in categories, and once the community has agreed on such categories and their
labels, a controlled vocabulary is in place.

Schema and value reconciliation: Ontologies can be used to reconciliate the schemas
and the instances of different databases that refer to the same domain.

Consistent query: The structure or simply the controlled vocabulary of an ontology
can be exploited for enhancing querying.

Knowledge acquisition: An ontology can be used to generate forms for adding in-
stances to the model, as the ontology stores the attributes of the classes to which
such instances pertain.

Clustering and similarity: Data can be clustered using the semantic similarity of the
classes against which such data is annotated in an ontology.

Indexing and linking: A controlled vocabulary can also work as an index to retrieve
objects or data.

Results representation: Ontologies can be used as schemas that scientists must com-
ply with in order to represent some results, e.g. results from microarray experi-
ments.

Classifying instances: Given a concrete instance, an ontology can be used to classify
it into the correct category, by applying automated reasoning to its attributes.

40http://www.obofoundry.org/crit.shtml

http://www.obofoundry.org/crit.shtml

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 64

Text analysis: An ontology can be used in text mining either as a controlled vocabu-
lary or exploiting the structure of the ontology.

Guidance and decision trees: An ontology, since it is a representation of the objects
of a knowledge domain, can guide a user when making decisions.

Much of the controversy on how to build and maintain bio-ontologies rises from
the fact that an ontology can perform one or more of the tasks described above. There-
fore, current bio-ontologies vary in (besides the already mentioned axiomatic richness,
rigour and usage) content type, scope, size, querying mechanisms, interoperability,
etc. An overview of the most important current bio-ontologies follows.

GO is the most successful (domain) bio-ontology [11]. GO provides a controlled
vocabulary to describe the cellular location, the molecular function and the biolog-
ical process of gene products, providing a de facto integration mechanism for sev-
eral gene product databases. The terms of GO are organised in a structure formed by
the following relationships: is a, part of, regulates, positively regulates and
negatively regulates. An example of how GO can be used for integration is shown
in Figure 2.20, in which the protein Q708Y0 is annotated with terms from GO. Many
other proteins from other databases are also annotated with GO terms, which allows the
retrieval of all the proteins from disparate resources that are annotated, e.g. with the
GO term Negative regulation of ethylene mediated signalling pathway,
or to exploit GO’s structure for a more expressive querying of the resources. The
annotations of entities of databases with GO terms are collected in the GOA (Gene
Ontology Annotation) project [20].

GO has become a reference bio-ontology and it is used for other tasks besides
integration of database contents, like analysis of high throughput data [65, 128] or
enhanced web browsing of biology resources [15]. There are other important bio-
ontologies that describe different domains, like CL for canonical cell types, SO for
sequence features or ChEBI [26] for biochemical entities.

Other bio-ontologies are more focused in concrete applications and information ex-
change rather than collecting canonical knowledge about a concrete biological knowl-
edge domain. Two examples stand out, namely BioPAX41 and OBI, providing a lan-
guage for describing biochemical pathways, and life science experiments, respectively.

41http://www.biopax.org/About.html

http://www.biopax.org/About.html

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 65

Figure 2.20: Fragment of the UniProt entry for the protein Q708Y0. In this fragment
the references to GO terms are shown.

Other bio-ontologies are used to build Knowledge Bases (KBs). A KB is a storage
system that includes an ontology as a schema (TBox) and the instances that can be cap-
tured in such schema (ABox). The instances are usually the entities of the knowledge
domain, and the ontology describes the classes of entities. For example, in a KB stor-
ing information about people, the class human would have a lot of instances (Mikel,
Robert, Simon, etc.), as the class human holds the attributes that a human is supposed
to have. A KB differs from a database in a crucial point: a KB makes inferences about
the stored information, exploiting precise semantics, besides retrieving it, whereas a
database only retrieves the information [27]. Databases are suited for regular and com-
plete information, as extending a database schema requires intense work. Contrary to
databases, KBs are suited for storing changing and incomplete information, as extend-
ing the schema is less laborious. Therefore KBs fit the requirements for representing
biological knowledge, as mentioned in Section 2.3.4.3.

There has been an increase in the number of KBs that store biological knowledge
in recent years, due to the improvement in performance of RDF and OWL storing sys-
tems, reasoners and querying languages (especially in the case of RDF). In many of
those systems OWL, RDF and RDFS are used together, or also ontologies are mixed
with databases. The KB built using CCO (CCO KB) is an example of an OWL and
RDF mixed system. The CCO KB stores information about proteins (UniProt), molec-
ular interactions (IntaCt [64]) and other data gathered using a Perl pipeline [5]. The
KB can be accessed using SPARQL42. Other examples of this mixed approach include

42http://www.cellcycleontology.org/query/sparql

http://www.cellcycleontology.org/query/sparql

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 66

Thea-online [79] and SWAN [37]. The BioGateway resource43 includes the CCO KB
and many other databases and OBO ontologies in an RDF KB (Uniprot also provides
all its entries in RDF, but no official SPARQL endpoint is provided to the data). Pure
OWL KBs include FungalWeb [13] (a KB of fungal enzymes) and yOWL [118] (a
KB for data about yeast). Ontology-database approaches have been implemented in
projects like Phosphabase [125], a system for storing and applying automated reason-
ing over information about protein phosphatases.

Finally, there are ontologies that are used in the life sciences to provide a frame-
work for bio-ontologies integration. Those ontologies are not focused on representing
a domain, but rather in providing a conceptual scaffold where the actual modelling
can rest. The Basic Formal Ontology (BFO) [51] is one of the most important Up-
per Level Ontologies used for bio-ontologies. It describes general classes of concepts
(e.g. process, physical entity) making the modelling more robust and allowing for in-
tegration of different bio-ontologies. The Relation Ontology (RO) [101] provides a set
of rigorously defined relationships that all the bio-ontologies should use for integra-
tion purposes. For example the part of relationship in the GO cellular component

subtree is the same part of relationship as the part of relationship of other anatom-
ical ontologies, and therefore they should all use the same part of from RO, which
has a rigorous semantic definition.

2.5 Quality problems of current bio-ontologies

Many current bio-ontologies are not fine grained and robust representations of bio-
logical knowledge, as most of them have been implemented without exploiting the
capabilities of KR languages, especially with regards to OWL.

The main reason for such lack of quality is that KR languages, and especially
OWL, are difficult and anti-intuitive [85, 92, 129], and hence are not exploited as they
should be. The Open World Assumption and automated reasoning are difficult to com-
prehend, especially the consequences of changing axioms in relation to the outcome
of automated reasoning. At the same time, biological knowledge is difficult to model
[110], especially with the fine grained resolution necessary for automated reasoning
to yield meaningful results. Therefore, the costs (difficult modelling) are perceived
as bigger than the benefits (automated reasoning, Semantic Web oriented integration,
etc.).

43http://www.semantic-systems-biology.com/biogateway/querying

http://www.semantic-systems-biology.com/biogateway/querying

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 67

Another reason for the lack of quality lies in the perception that many biologists
have of bio-ontologies. For example, a lot of bio-ontologies are seen as controlled
vocabularies for annotations rather than representations of knowledge [104, 42, 70];
thus, the current emphasis on bio-ontology development is in human consumption of
the information instead of computer consumption (automated reasoning). There is the
perception that if a bio-ontology suffices to collect important terms from annotations
in a minimally structured fashion, that should be enough. This perception is prevalent
due to the fact that bio-ontologies must deliver solutions for integration here and now

[43, 106], and keep up to date in relation to the content from databases. GO, for
example, was quickly released and demonstrated to be useful from the very beginning,
even with a minimal structure.

The quality problems of current bio-ontologies lie in two areas: lack of rigour and
lean axiomisation. Lack of rigour also affects axiomisation, as axioms cannot be ex-
ploited for automated reasoning without rigorously describing them in a KR formalism
with precise semantics. For example, even though potential inferences are described
in initiatives like [71], the axiomisation is not rich enough for meaningful automated
reasoning (e.g. defined classes are present in the ontology but no new superclasses are
inferred: the asserted and the inferred hierarchies have exactly the same form).

The modelling behind many bio-ontologies is not rigorous [106]. For example the
semantic interpretation of GO is informally defined in documentation, if defined at all
[46]. This means that the reading of the part-of relationship can only be interpreted
by humans from the documentation [72], as it is not explicitly stated in the model
[105]. The GO documentation states that the part-of relationship in GO should be
regarded as necessarily is part, that is, whenever the part exists it does so as part of the
whole, but the whole does not necessarily always have the part as its part44. Another
consequence of the lack of rigour is that the relation is-a is not used in concordance
with its intended semantics [105]. There are other examples of non-rigorous modelling
in GO. For example the representation of biological taxa in GO does not follow a
formal theory like the one presented in [96], which creates conflicts around the usage
of the word “sensu” [103, 127]. Different levels of granularity are also mixed in GO
[67]. These problems can be extrapolated to the majority of the OBO ontologies.

Besides limited rigour, most of the OBO ontologies also have a limited axiomisa-
tion [42]: only a few relationships are used and there is no qualification of relation-
ships. In the OWL versions of many OBO ontologies, only existential restrictions are

44http://geneontology.org/GO.usage.shtml#partof

http://geneontology.org/GO.usage.shtml#partof

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 68

used, without even disjoints45.
Most of the biological knowledge found in bio-ontologies is “buried” in labels

instead of being codified in axioms [73, 30, 104, 2]. This is due to the fact, that,
as mentioned, the priority for many bio-ontologies is efficient annotation integration
rather than knowledge modelling per se. Thus, the bio-ontologies are designed to be
mainly human readable. Plenty of semantic content is also buried in the logic of ad

hoc programs that are written to integrate and process data. For example, as part of the
CCO pipeline, molecular interactions from IntAct had to be modified in order fit in the
CCO schema: such equivalences are not explicit.

Another example of implicitly defined axiomisation, coming back to GO, is the
propagation of the relationship regulates along part-of and is-a, which is only
mentioned in the documentation but not implemented in the ontology46.

Having a rich axiomisation expressed in a rigorous manner using a KR formalism
like OWL allows the exploitation of automated reasoning, which has different benefits.
Automated reasoning allows for querying: e.g. in the current GO the user cannot query
for processes that happen during other processes (e.g. cytokinesis during cell cycle) as
during is not codified in a property. The richer the axiomisation, the more complex
queries can be done. For example a transitive superproperty of a functional object
property in the ontology allows for modifying the extent of a query (e.g. the Sequence
ODP47).

Automated reasoning can also be used for maintenance and consistency checking.
GO is currently is-a complete [41], which means that every term has got at least one
is-a relationship to a root term (molecular function, biological process, or
cellular component), assuming is-a to be transitive. Maintaining such structure in
an ontology of over 20,000 terms is difficult and incomplete, as shown by the GONG
project [73]. In the case of consistency checking, if an ontology is sufficiently rich
automated reasoning can be applied to check the definitions of newly added terms and
hence ensure consistency, or to check the consistency of the whole model [8].

A richer axiomisation would result, for example, in better analysis of high through-
put data [127] or deeper analysis of annotations [2]. Rich axiomisation, coupled with
OWL imports, also means that composition of terms is more explicit and hence eas-
ier to test, which is a clear target for OBO ontologies, as they are all supposed to be

45The same applies for most of the existing ontologies outside the biological knowledge domain [9].
46http://geneontology.org/GO.doc.shtml#relationship-transitivity
47http://www.gong.manchester.ac.uk/odp/html/Sequence.html

http://geneontology.org/GO.doc.shtml#relationship-transitivity
http://www.gong.manchester.ac.uk/odp/html/Sequence.html

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 69

orthogonal to each other [102]. As bio-ontologies can be used as the data model be-
hind applications, a richer axiomisation allows a wider range of functionalities on the
software side [84].

There have been different attempts to improve the axiomisation and the rigour of
bio-ontologies. For example ad hoc consistency checking and enrichment of GO has
been attempted in different projects. In those projects GO has been translated to other
formalisms, consistency has been checked and the results have been fed back to GO.
The work presented in [127] performed such consistency checking using frames in
Protégé 3. The GONG [73] and OBOL [77] projects performed consistency checks
using OWL and the OBOL language, respectively. However, GONG and OBOL went
further and added more axioms to GO as a result of syntactically dissecting GO labels.
Alignment discovery between different OBO ontologies was performed in the work
presented in [12].

The problem with the initiatives described above for improving bio-ontologies is
that they are bespoke solutions, and hence hardly reusable. There is a need in bio-
ontology engineering for principled and abstract solutions that enhance axiomatic rich-
ness and rigour. Such solutions should be able to be reused in different bio-ontologies,
and created and shared by the bio-ontologists, as is the case in other engineering dis-
ciplines. Such solutions should be able to be used off-the-shelf, without ad hoc im-
plementations, and not only for enrichment, but in the whole bio-ontology life cycle
(design, implementation, maintenance). Also, they should facilitate the usage of OWL
in bio-ontologies, as that is one of the main reasons for their current low quality. The
use of Ontology Design Patterns (ODPs) in the development of bio-ontologies is a
solution that fulfils such requirements.

2.6 ODPs

Abstraction in design has been a constantly respected principle in every new engi-
neering field. This includes software engineering through the abstraction offered by
the software design patterns widely used in object oriented programming [33]. Using
abstraction, the expressive power of a language can be encapsulated in discrete mod-
els that have well understood properties and are easier to use and share, efficient, and
well documented, therefore resulting in a more efficient engineering process that gen-
erates higher quality software artefacts. ODPs represent the same principle in the field
of ontology engineering. However, given that ontology engineering is a newer field

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 70

compared to software engineering, ODPs’ definition, representation and application
methods lack the same level of consensus that the software design patterns enjoy.

2.6.1 ODPs in the literature

The literature about ODPs can be divided in two areas: literature that discusses the
notion of ODPs and literature that presents concrete ODPs for tackling concrete design
problems in ontologies.

The literature about the notion of ODPs begins with the paper about Ontological
Design Patterns [88], in 2000. Such ODPs are best practices for molecular biology
metadata modelling. Later, in 2001 and 2003 respectively, the ideas of Semantic Pat-
terns [107] and Knowledge Patterns [23] were presented, as reusable components for
building KBs. In 2004 an idea of ODPs was briefly mentioned in [112]. In 2005 a
distinction between Logical Ontology Design Patterns (LODPs) and Concept Ontol-
ogy Design Patterns (CODPs) was made in [35]. LODPs provide examples for solving
modelling problems within the realm of the KR languages used, without any reference
to concrete entities or models. For example, a LODP shows how to use the equivalence
axiom in OWL, regardless of the identity of the equivalent classes. Also in 2005, the
notion of OWL Macros for ontology engineering was presented in [121]. Finally in
2007 the notion of Content Ontology Design Patterns (CODEPs) was introduced, as
instantiations of LODPs in concrete domains, in [34]. In [34], further types of best
practices were presented (e.g. architectural design patterns, syntactic patterns, etc.).

Regarding the literature that presents concrete ODPs, most of the attempts have
been individual examples of best practices, like the well known and thoroughly re-
searched problem of mereology representation [90, 1, 94] and the related problem of
propagation along transitive roles [93, 82, 97, 95, 98]. Granularity [81], default knowl-
edge [54], possibilities [53], modularisation best practices [83, 87] and Upper Level
Ontologies [86, 51] have also been proposed in the literature.

Outside the literature on KR, the W3C Semantic Web Best Practices and Deploy-
ment Working Group48 (W3C BPD) has collected some best practices of ontology
engineering, e.g. the n-ary relationship49 and the value partition50.

48http://www.w3.org/2001/sw/BestPractices/
49http://www.w3.org/TR/swbp-n-aryRelations/
50http://www.w3.org/TR/swbp-specified-values/

http://www.w3.org/2001/sw/BestPractices/
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/swbp-specified-values/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 71

2.6.2 ODPs in this work

2.6.2.1 Comparison to other initiatives

The notion of ODPs used for this thesis differs and has some similarities with some of
the other attempts described in Section 2.6.1.

Some of those attempts are equivalent to the idea of ODPs in this thesis, like the
idea of ODPs described in [112], the OWL Macros described in [121], the CODPs
described in [35], and the CODEPs described in [34]. Other initiatives are different
to the ODPs of this thesis. For example the Ontological Design Patterns [88], the
Semantic Patterns [107] and the Knowledge Patterns [23] have the drawback of being
represented in a formalism that needs to be translated into actual KR languages such
as OWL, making them difficult to use; ODPs in this work are represented directly in
OWL. LODPs [34] are also different to the notion of ODPs used for this work, as
they can be too simplistic in some cases, e.g. the subClassOf LODP is completely
uninformative as a best practice (in this work, there is a minimum of expressivity
that an ODP must have in order to be considered as such and included in the online
catalogue of ODPs). The hierarchical model presented in [34], albeit formally correct,
makes the usage of those best practices an unnecessarily complex task for the aim of
this work. For example, LODPs are sometimes semantically equivalent to CODEPs,
which adds unnecessary complexity as they can be used in the same way. The ODPs
of this thesis are instances that implicitly represent a more abstract structure, instead of
making the division between logical and content levels, thus making the ODPs more
usable.

There are two areas that are lacking in the literature about ODPs reviewed above:
application mechanisms (except the OWL Macros described in [121]), and, in the case
where concrete ODPs are presented (e.g. [34]), specific ODPs for modelling biological
knowledge.

Regarding the literature that presents concrete ODPs, some of the best practices
described are equivalent to ODPs of the online catalogue of ODPs: appropriate refer-
ences have been included in the online catalogue in such cases. Examples include lists
[28, 108], exceptions and n-ary relationships [108]. Also, one of the OWL Macros
presented in [121] is equivalent to the Closure ODP51. The Closure ODP represents
a simple but necessary and often omitted modelling step [85]: closing a restriction
so that it only points to a given class. Many newcomers to OWL assume that using

51http://www.gong.manchester.ac.uk/odp/html/Closure.html

http://www.gong.manchester.ac.uk/odp/html/Closure.html

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 72

an existential restriction suffices to assert that the class can only have one relation-
ship along a given property. For example, many users assume that the expression
person subClassOf has head some head means that people have only one head.
What it really means is that people must have at least one head, but can have more than
one, which is obviously incorrect modelling. For example, if a DL query of the form
query equivalentTo has head some head is performed, an alien with more than
one head (alien subClassOf has head min 5 head) would be retrieved altogether
with the human, both as subclasses of query. Therefore, the existential restriction
must be combined with an universal restriction to obtain a closed relationship: person
subClassOf (has head some head) and (has head only head). The universal
restriction asserts that, if a person has a has head relationship, it must point to the head
class, and nothing else. The universal restriction, on its own, is not sufficient either, so a
maximum cardinality constraint needs to be added (person subClassOf (has head

some head) and (has head only head) and (has head exactly 1 head)). It
is a simple axiomisation, but it is not obvious [85].

The two examples from the W3C BPD are represented in the online catalogue of
ODPs as the Nary Relationship ODP52 and the Value Partition ODP53.

The main difference between those best practices and the ODPs presented in this
work is the target knowledge domain, which in the case of this work is biological
knowledge. In fact many of the examples of the online catalogue of ODPs are appli-
cations of ODPs in real bio-ontologies like GO or SO. There is, however, a emerging
trend in literature on KR best practices specific to biological knowledge, exemplified
by the recent publication of a pattern for representing biological taxa [96].

Another difference with the mentioned best practices is that the ODPs presented in
this work are systematically described and classified in a centralised online catalogue
of ODPs and an application procedure is provided, based on OPPL.

52http://www.gong.manchester.ac.uk/odp/html/Nary_Relationship.html
53http://www.gong.manchester.ac.uk/odp/html/Value_Partition.html

http://www.gong.manchester.ac.uk/odp/html/Nary_Relationship.html
http://www.gong.manchester.ac.uk/odp/html/Value_Partition.html

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 73

2.6.2.2 A working definition for ODPs

The intuitive definition of an ODP is straight forward: a well known and tested “recipe”
that helps the ontology engineer to create a richer ontology or maintain it more effi-
ciently, by providing a solution to a common modelling problem. For example, a re-
current problem in life sciences is how to model things that are duplicated along a sym-
metry axis, like the right hand and left hand in humans. The Selector ODP54 presents a
solution to that problem, explained as follows. The entity is the same (hand), the only
difference being in which position of the symmetry axis (sagittal plane) it stands: right
or left. The Selector ODP consists of using only a hand class (instead of right hand

and left hand), and adding left and right as independent values (those values can
also be used e.g. for left and right leg). Whenever a reference to a concrete hand needs
to be added, like an infection happening only in the right hand, a restriction of the form
happens in only (hand and has laterality some right) should be used. Us-
ing such a procedure the amount of classes of the ontology considerably decreases.

In this thesis the intuitive definition is assumed to be enough, because the aim
of this work is not to improve KR per se; the aim is to help bio-ontology curators
to better represent biological knowledge through the use of ODPs, and therefore a
working definition for ODPs is provided.

ODPs can be presented to bio-ontologists as abstract models or concrete instances.
As the focus of this research is to provide easy to apply ODPs, they are presented
as instances instead of abstract models. Another reason for doing so is that there is
no easy to use abstract graphical representation for OWL. The difference between the
abstract model and the concrete instances can be appreciated by comparing Figures
2.21, 2.22 and 2.23 (the UML to OWL mapping used is described in Figure 3.3). The
Value Partition ODP55 is used as a running example. The Value Partition ODP is used
to model the fact that a parameter can only take certain values, thus, the parameter is
said to be “exhausted” by such values. For example, it could be that in an ontology
about people, a person can only be tall, medium or short. In such ontology this ODP is
used, e.g. to avoid the introduction of any extra value by another developer (e.g. very
tall) or to make it possible for a reasoner to infer that a person that is not tall and has
a height must be either medium or short (provided that some axioms of the ontology
enforce the fact that a person must have a height). The structure of this ODP consists
of the parameter class (e.g. Height) and the values of the parameter as subclasses of

54http://www.gong.manchester.ac.uk/odp/html/Selector.html
55http://www.gong.manchester.ac.uk/odp/html/Value_Partition.html

http://www.gong.manchester.ac.uk/odp/html/Selector.html
http://www.gong.manchester.ac.uk/odp/html/Value_Partition.html

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 74

the parameter class (e.g. Tall, Medium, and Short). The value classes are disjoint.
The key element is a “covering axiom”: the parameter class is equivalent to the union
of the value classes, therefore if a new subclass is added to the parameter class the
reasoner will flag the parameter class to be inconsistent. Figure 2.21 is a completely
abstract representation of the Value Partition ODP. Figure 2.22 is an instance of such
representation, because, e.g. two classes are used for the values (V1 and V2), whereas
in the abstract model an arbitrary amount of values is represented. Figure 2.23 is an
even more concrete representation of the abstract model, as concrete values are used
(Tall, Medium, and Short).

Therefore, we define ODPs in this thesis as concrete instances that exemplify more
abstract structures. Such structures are well known and thoroughly documented best
practices of bio-ontology engineering. ODPs are represented in OWL, a concrete lan-
guage, instead of using a more abstract formalism. As defined for this thesis, ODPs
differ from software design patterns because software design patterns are not frag-
ments of source code (they are abstract structures not defined in the same language as
the target language), whereas ODPs are presented as fragments of OWL ontologies or
“mini-ontologies”. This is done that way because there is not a satisfactory mechanism
for graphically representing abstract OWL structures.

The limit between an ODP and a small concrete ontology is fuzzy. The difference
lies in that an ODP describes a way in which ontologies should be built, whereas a
small ontology is an end on its own, as it describes a part of the knowledge domain.
For example, even though there are different Upper Level Ontologies available, there is
an Upper Level Ontology ODP, because using top-level distinctions is a good practice,
regardless of which values they take. However, RO is not an ODP because it is a
concrete representation of the knowledge domain, describing the properties that relate
entities of biological interest.

ODPs also differ from ontology building methodologies like Methontology [47] in
the scale of the solution: ODPs should be used to tackle concrete modelling problems
in concrete ontologies, whereas methodologies provide more general strategies on how
to build ontologies.

2.6.2.3 Advantages of using ODPs

This section describes the advantages of the use of ODPs for ontology engineering
[10]. Some of the advantages have been already demonstrated in the literature, other
advantages are reasonable assumptions based in the author’s and other colleagues’

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 75

P1 ≡ V1 t ... t Vn
V1 v P1 ,..., Vn v P1
V1 v ¬ Vn ,..., Vn−1 v ¬ Vn

Figure 2.21: DL notation of the abstract structure of the Value Partition ODP. The
structure of the Value Partition ODP is completely abstract because there is not a set
number of values (V1 ,..., Vn), yet the structure of the ODP is completely described by
this notation.

Figure 2.22: Instance of the structure of the Value Partition ODP. This is an instance
of the structure shown in Figure 2.21, as two values (instead of any number of values)
are used, even though they are not concrete values.

Figure 2.23: Instance of the structure of the Value Partition ODP (more concrete than
Figure 2.22). This is the most concrete structure, as three given values are used: Tall,
Medium, and Short.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 76

Design

Rich and granular modelling
Semantic encapsulation
Robustness
Modularity
Automated reasoning
Alignment
Knowledge reusability

Implementation

Focused development
Collaborative development
Tools
Prototyping
Re-engineering
Changes
Principled modelling

Communication
Good communication
Documented modelling
Comprehension of advances in KR

Figure 2.24: Advantages of using ODPs. The advantages are divided in three areas:
design, implementation and communication.

experience in bio-ontology development, and finally other advantages have been ex-
perimentally confirmed by the use cases of Chapter 6, as it is explained in Chapter 7.
The advantages are divided into three areas, as summarised in Figure 2.24: design,
implementation, and communication.

Design

Rich and granular modelling: ODPs allow for a more fine-grained represen-
tation of the knowledge, as they help in exploiting the expressivity of KR
languages to obtain the highest possible resolution in modelling. On the
other hand, the representational needs of biological knowledge, in terms
of granularity, are increasing as the knowledge that needs to be captured
grows in complexity [92].

Semantic encapsulation: ODPs reduce complex semantics to a discrete ab-
straction with a name, which helps in finding a solution faster than without
ODPs. Not only for finding solutions, encapsulation also reduces the ex-
pressivity space and hence gives the ontologist a sense of the expressive
limitations of the language (e.g. the Nary Relationship ODP56 indicates

56http://www.gong.manchester.ac.uk/odp/html/Nary_Relationship.html

http://www.gong.manchester.ac.uk/odp/html/Nary_Relationship.html

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 77

that OWL does not support higher arity relations).

Robustness: Some ODPs help in producing bio-ontologies that are less likely
to errors when modified, or make errors more explicit.

Modularity: Some ODPs help in producing bio-ontologies that are easier to
modify as they are created with independent modules. In a domain like
biological knowledge, where ontologies are potentially huge, this feature
is especially interesting [129].

Automated reasoning: The rich axiomisation needed for a meaningful auto-
mated reasoning process is obtained with reduced effort using ODPs.

Alignment: The number of bio-ontologies is increasing, and efficient meth-
ods for aligning them are needed [129]. Although ODPs do not represent
an alignment method per se, the consistency inherent in modelling using
ODPs facilitates the semantic alignment of different ontologies.

Knowledge reusability: One of the aims of KR is to make knowledge reusable,
thus to define it once and reuse it in different systems, especially in the
context of the Semantic Web [3]. ODPs facilitate knowledge reusing as
they are independent modelling units.

Explicit modelling: ODPs help in explicitly stating, via axioms, the knowledge
that needs to be modelled, instead of leaving it “buried” in term labels. That
allows developers to exploit other tools like automatic OWL explanations57

for debugging bio-ontologies. Also, the decision to choose an ODP and
make knowledge explicit forces the ontologists to challenge assumptions
about the domain of knowledge [109].

Implementation

Focused development: ODPs reduce development time, allowing the focus of
the modelling effort to be on specific (more difficult) areas of the domain.

Collaborative development: By agreeing on the use of ODPs, different devel-
opers can more efficiently work in the same ontology.

Tools: ODPs can be programmatically codified, e.g. facilitating the creation of
tools for guiding the ontologist in the process of building an ontology.
Tools can also exploit ODPs to provide easier ways of building especially

57http://owl.cs.manchester.ac.uk/explanation/

http://owl.cs.manchester.ac.uk/explanation/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 78

complex or difficult areas of an ontology. On the other hand, ODPs facil-
itate the design of the software that will interact with the ontology, when
using the ontology as a driving model in an application.

Prototyping: A prototype can be built rapidly as an assembly of already exist-
ing ODPs, in the early stages of development, saving time: without ODPs
the building of such prototype is more laborious.

Re-engineering: ODPs are applied in the beginning as well as during the de-
velopment of an ontology, e.g. allowing to refactor inconsistent portions of
an ontology.

Changes: Consequences of changes are more predictable and changes are more
traceable using ODPs.

Principled modelling: Ontology development is still more an art than an engi-
neering discipline, making room for “guruization” phenomena where doc-
trine imposes over engineering principles [18]. ODPs offer a framework for
defining what is correct modelling for a given set of requirements and for
assessing the modelling more precisely, helping in the process of making
ontology building more an engineering discipline than a craft.

Communication

Good communication: The developers recognise and understand faster the mod-
elling decisions, as they are made with ODPs which are thoroughly docu-
mented. Also, ODPs provide a vocabulary for discussing different repre-
sentations of the same knowledge [30]. Even in the case that the application
of an ODP is rejected, it challenges the assumptions of the developers and
it makes it more reasonable for other developers to demand a detailed ex-
planation from them on why the ODP should be rejected. Thus, if an ODP
is presented by one of the developers instead of presenting some vague
modelling, the counter arguments for rejecting it will have to be more so-
phisticated and therefore the discussion much richer.

Documented modelling: The design decisions made during development can
be registered by tracing which ODPs were applied.

Comprehension of advances in KR: KR languages, especially OWL, are evolv-
ing fast [50]. ODPs are examples of how to use the new features of KR
languages, and therefore help in grasping the advances in KR.

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 79

2.6.2.4 Methods for applying ODPs

There are different methods for applying ODPs:

Manually: The structure of the ODP can be recreated, step by step, in the target on-
tology, following the example from the online catalogue of ODPs.

OWL imports: ODPs can also be directly incorporated by importing them, as they are
OWL small ontologies. Using OWL importing, however, the ODP can only be
used “as is”, because renaming entities is not possible when importing. A more
direct method of incorporating the ODP and being able to rename its entities is
by simply saving it locally, and starting to build the ontology around the ODP,
renaming its entities as necessary.

Protégé wizards: The Protégé wizards58 guide the modeller in the step by step appli-
cation of the ODP; it is faster than the manually method, but a wizard should
exist in the first place for the desired ODP.

OWL Macros: OWL Macros can be used to directly transform OWL ontologies in
RDF/XML format [121]. This method requires XSLT knowledge, and interact-
ing with the ontology at markup level misses all the semantics; e.g. queries to
the reasoner cannot be done in order to retrieve a set of entities to which to apply
the ODP.

Programmatic application: The OWL API or the Protégé script tab59 can be used to
codify an ODP and automatically apply it. The drawback of this method is that
it demands programming knowledge from the ontologist, something not always
possible. Also, programmatically codifying complex axioms is cumbersome and
not flexible.

Ontology PreProcessor Language: OPPL is a scripting language for automatically
modifying the axioms of OWL ontologies. OPPL can be used for applying
ODPs, as in the programmatic application method, but differing in that the
user need not know detailed programming.

58http://www.co-ode.org/downloads/wizard/
59http://www.ea3888.univ-rennes1.fr/dameron/protegeScript/

http://www.co-ode.org/downloads/wizard/
http://www.ea3888.univ-rennes1.fr/dameron/protegeScript/

CHAPTER 2. ODPS FOR BIO-ONTOLOGIES 80

2.7 Conclusions

The main problem of current bioinformatics is the excess of computationally unman-
ageable information. The LSSW aims at applying KR techniques, and especially Se-
mantic Web technologies like RDF and OWL, to solve this problem. One of the main
components of the solution is the use of bio-ontologies to computationally represent
biological knowledge. Many of the current bio-ontologies, however, do not exploit
all the capabilities of KR languages like OWL, especially with regards to axiomatic
richness and rigour. Axiomatic richness and rigour allow to exploit automated reason-
ing, which can be used for sophisticated knowledge management like rich querying,
consistency checking, ontology maintenance and hypothesis generation.

A solution that contributes to the creation of axiomatically richer and more rigor-
ous bio-ontologies is the use of ODPs, as ODPs, being already tested and thoroughly
documented solutions to concrete modelling problems, act as guides to KR languages
like OWL. The contribution of the chapter is a working definition of ODPs, comparing
it to previous attempts, and a description of the advantages of the use of ODPs for bio-
ontology engineering, therefore providing an answer to the research question What are

ODPs?

Chapter 3

A Catalogue of ODPs

This chapter provides an answer to the research question How can we obtain ODPs?

In order for bio-ontologists to be able to efficiently explore and retrieve ODPs, an
online public catalogue of ODPs1 has been created during this research [10]. The cata-
logue focuses on ODPs that facilitate biological knowledge modelling. The ODPs are
consistently described using a set documentation schema, facilitating the comparison
of different ODPs, and hence the exploration of the catalogue.

The chapter provides all the necessary information about the catalogue, like mo-
tivation, design, implementation and usage. The catalogue itself should be explored
online or in Appendix A, which is a copy of the online catalogue.

The chapter starts by describing the motivation and requirements for an ODPs pub-
lic catalogue in Section 3.1. Section 3.2 describes the design of the catalogue, present-
ing the details of the documentation schema and the justification for the classification
of ODPs. Section 3.3 describes the implementation details of the catalogue, which is
based on describing each ODP in an OWL file, making it possible to exchange ODPs
with their documentation attached. Section 3.4 describes how to use and contribute
new ODPs to the catalogue. Finally, other catalogues of ontology engineering best
practices are reviewed in Section 3.5.

3.1 Motivation and requirements

As mentioned in Chapter 1, the expressivity of a KR language like OWL allows an
ontologist to create an infinite number of models, each model being an unique combi-
nation of axioms. If those models are arranged in a hypothetical expressivity space, the

1http://odps.sf.net/

81

http://odps.sf.net/

CHAPTER 3. A CATALOGUE OF ODPS 82

ontologist can be imagined as an explorer of such a space. Points of rich axiomisation
on the expressivity space are the optimums where the ontologist should tend to, and
ODPs highlight such points. As the aim of this research is to facilitate the usage of
KR technology to the bio-ontologists, it is assumed that, a priori, the ontologist is not
aware of any such points. Therefore they must be collected and presented to ontologists
in a centralised repository that can be used as a guide to explore the expressivity space.
The repository is a “tour” of the expressivity space of the KR language, highlighting
different points of the expressivity space (ODPs), which is the main motivation for an
online catalogue of ODPs.

The ontologist should be able to get the greatest amount of information possible
from exploring the online catalogue: the aim of ODPs is to make KR languages more
usable, and hence the documentation needs to be easy to understand by someone that
does not necessarily have KR expertise. Therefore, the documentation of each ODP
should be organised as much as possible and separated in clear sections. Such docu-
mentation schema also facilitates the exploration of the repository by making it pos-
sible to compare different ODPs. For example the Nary relationship is described in
various publications or resources in different ways (and cross referenced): in the W3C
BPD2, in [34], and in [108]. There is no way of comparing the different descriptions
or comparing the Nary relationship to other ODPs using a common schema. With a
centralised repository of ODPs in place, the bio-ontologists need not waste precious
development time exploring best practices from different resources, with different de-
scription schemas.

The more ODPs in the repository, the more complete the exploration of the ex-
pressivity space will be. Therefore, the online catalogue needs to be easy to extend by
adding new ODPs, whilst retaining consistency in the descriptions. ODPs should be
added by the ontologist’s community.

The requirements described above determine the design of the online catalogue,
which is described in Section 3.2.

3.2 Design

In essence, the online catalogue of ODPs consists of a collection of ODPs described
using a documentation schema and classified in three groups (Tables 3.2, 3.3, and
3.4). The documentation schema consists of a list of parameters or sections that should

2http://www.w3.org/TR/swbp-n-aryRelations/

http://www.w3.org/TR/swbp-n-aryRelations/

CHAPTER 3. A CATALOGUE OF ODPS 83

be filled with information or diagrams, like name, aim, structure, etc. Some of the
sections are optional and some are required (Table 3.1). An example of how the docu-
mentation schema is used to describe the Value Partition ODP3 can be seen in Figure
3.1.

In order to easily navigate the online catalogue, a classification of ODPs is needed.
The classification should also help the bio-ontologist in choosing the appropriate ODP.
Therefore a classification based on the functionality of ODPs is used for this online
catalogue, dividing the ODPs in three main groups:

Extension ODPs (Table 3.2): ODPs that by-pass the limitations of the KR language,
in this case OWL.

Good Practice ODPs (Table 3.3): ODPs that should be applied to obtain a more ro-
bust, cleaner and easier to maintain ontology.

Domain Modelling ODPs (Table 3.4): ODPs that offer ways of modelling concrete
requirements of the domain being represented.

Most of the ODPs applied to biological knowledge tend to belong to the domain
modelling category, due to the special requirements and complexity of the biologi-
cal knowledge domain [110], but they can also be found in the other categories. The
different categories fulfil different requirements that bio-ontologists have when build-
ing bio-ontologies. For example if a bio-ontologists finds that the binary relations of
OWL are a limitation in terms of modelling, he will ideally look for a solution in the
Extension category, and find a suitable solution in the N-ary Relationship ODP.

Another important distinction is the one between ODPs that exploit automated rea-
soning (Dynamic ODPs) and ODPs than do not (Static ODPs). Static ODPs do ex-
ploit automated reasoning but only for querying and consistency checking; dynamic
ODPs also exploit it for obtaining the desired structure, besides querying and con-
sistency checking. For example in the Normalisation ODP4, automated reasoning is
necessary to obtain the desired structure (a taxonomy with multiple inheritance), apart
from querying and consistency checking, whereas in the Sequence ODP automated
reasoning is only used for querying the sequence and making sure that the sequence is
consistent.

3http://www.gong.manchester.ac.uk/odp/html/Value_Partition.html
4http://www.gong.manchester.ac.uk/odp/html/Normalisation.html

http://www.gong.manchester.ac.uk/odp/html/Value_Partition.html
http://www.gong.manchester.ac.uk/odp/html/Normalisation.html

CHAPTER 3. A CATALOGUE OF ODPS 84

Section name Explanation Status
Name Unique identifier Required
Also known as Any other name Optional
URL An URL that points to an OWL file Required
Classification One of “Extension”, “Good practice” or “Domain Modelling” Required
Motivation A general situation where the ODP might be necessary Required
Aim The concrete objective of the ODP, the detailed solution it provides Required
Elements The properties, classes and instances of the ODP Required
Structure How the elements are combined (UML) Required
Sample The application of the ODP in a real ontology (UML) Required
Implementation Detailed procedure for applying the ODP Required
Result The main (desired) changes on the target ontology after application Required

of the ODP and sometimes after automated reasoning
Side effects Any non-desired or non-obvious effects of applying the ODP Required
Known uses Any public ontology where the ODP has been successfully applied Optional
Related ODPs Any ODP that reuses this ODP Optional
References Any resource where the ODP was previously described Optional
Additional Anything that does not fit in the other sections Optional
information

Table 3.1: Documentation schema for describing each ODP. The column on the left
provides the list of sections, the column in the middle a brief explanation for each
section and the column on the right the status (optional or required).

Different classification schemas for ODPs have been proposed in the literature. In
[17] the following categories are presented for classifying patterns in ontology engi-
neering: Application Patterns, Architecture Patterns, Design Patterns, Semantic Pat-
terns and Syntactic Patterns. The ODPs presented in this thesis focus on the modelling
of the ontology, which makes them equivalent to Semantic Patterns, but as they have
different functions there are further divided into the three categories of the online cata-
logue (Extension, Good Practice, Domain Modelling). Another classification is the one
presented in [34], where ODPs are classified as Logical ODPs, Architectural ODPs and
Content ODPs. Again, the ODPs presented would be equivalent to the idea of Content
ODPs but they need further classification in order to be efficiently explored.

3.3 Implementation

The implementation of the online catalogue of ODPs is based on storing each ODP
in an OWL file (Figures 3.4, 3.5, and 3.6). The semantic content of the ODP, the
structure, is codified in OWL axioms, and the documentation sections are codified
in annotation values. All the OWL files of the online catalogue, each of them de-
scribing an ODP, follow the same convention in their basic structure (Figure 3.2):

CHAPTER 3. A CATALOGUE OF ODPS 85

NAME: Value Partition.

ALSO KNOWN AS: Enumeration, if it is built using individuals instead of classes.

CLASSIFICATION: Good Practice.

MOTIVATION: Reality is full of attributes of elements. For example, a person can be defined as
being short, medium or tall, and the attribute height can just get those values. Height is said to
be covered or exhausted by those values; the possible heights are only those three. Biology is
full of such situations: metabolism can only be anabolism or catabolism, membrane transport
can only be uniport, sinport or antiport, regulation is always positive, negative, and so forth.

AIM: To model values of attributes. In this example we model biological regulation, being negative
or positive. PositiveRegulationOfCellKilling, from GO, is linked to the appropriate value.

STRUCTURE: See Figure A.33.

SAMPLE: See Figure A.34.

ELEMENTS: The main elements are the classes that make up the Value Partition itself: a class for
the attribute and the subclasses for the values. In this case, Regulation, Positive, and Nega-
tive, respectively. The most important relationship is the one that links each element of the
knowledge domain with the values of the Value Partition. In this case, IsRegulationOfType
(functional).

IMPLEMENTATION: Identify the attributes every element must be described with. For each at-
tribute, create a class under Modifier (or the pertinent upper level distinction that it is used in
the ontology). In each attribute class create a subclass for every value and make them disjoint.
Create a covering axiom defining the attribute class. Create the restrictions pointing to the
values of the Value Partition.

RESULT: The attributes and the elements that are described or modified by the attributes get untan-
gled: whenever a new element enters the domain (e.g. another regulation phenomenon) it is
only a matter of adding a restriction pointing to the pertinent Value Partition class. The values
that can be given to a certain attribute are constrained, enforcing a better modelling.

ADDITIONAL INFORMATION: The Value Partition built with classes offers an advantage over
the Enumeration (a Value Partition built with individuals): new subpartitions can be built for
each of the value classes (e.g. very tall).

REFERENCES:

• http://www.w3.org/TR/swbp-specified-values

• http://www.co-ode.org/resources/tutorials/bio/

URL: http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Value_
Partition.owl

Figure 3.1: Description of the Value Partition ODP using the documentation schema.
In the case of the structure and sample sections, a diagram is shown in the online
catalogue, not shown here due to space limitations.

http://www.w3.org/TR/swbp-specified-values
http://www.co-ode.org/resources/tutorials/bio/
http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Value_Partition.owl
http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Value_Partition.owl

CHAPTER 3. A CATALOGUE OF ODPS 86

Extension ODPs
Exception (Dynamic) OWL cannot represent default knowledge: this ODP can be used

to simulate it, including exceptions of defaults
Nary Relationship (Static) OWL can only represent binary relationships (e.g. “patient has

condition temperature”): this ODP can be used to represent
relations between more than two entities (e.g. “patient has
condition increasing temperature”)

Nary DataType Relationship This ODP applies the same principle as the Nary Relationship
(Static) ODP to data type values instead of entities; therefore it can

be used to model composite data type values (e.g. a
temperature in certain units and at a certain pressure)

Table 3.2: Extension ODPs in the online catalogue. The classification according
to exploitation of automated reasoning is shown close to the ODP name, on the left
column. On the right column a brief explanation of the utility of the ODP is provided.
ODPs taken from the literature or other online resources (refer to the online catalogue
for references).

Good Practice ODPs
Entity-Quality (Static) Model entities and their qualities using a single generic

property: e.g. a building (entity) has a quality (generic property)
of being tall (quality). The generic property is reused for other
entities: e.g. a car has a quality of being white

Entity-Property-Quality Model entities and their qualities using a property for each
(Static) quality: e.g. a car (entity) has a colour (property) white (quality)
Entity-Feature-Value Model entities and their qualities, further defining the qualities:
(Static) e.g. a car (entity) has a colour (feature) white (value) with

a brightness (further value) and a saturation (further value)
Selector (Static) Represent qualities that can be used to select an entity, e.g. along

a symmetry axis (right or left)
Value Partition (Static) Represent the complete set of values that a parameter can take: e.g.

the gender of a person can only be male or female
Defined Class Description Simulate and if-then data structure
(Dynamic)
Normalisation (Dynamic) Use the reasoner to maintain an ontology with multiple

inheritance, i.e. an ontology in which each class has more than
one superclass

Upper Level Ontology Represent the main types of entities of an ontology (e.g. processes
(Static) or entities), to facilitate integration with other ontologies
Closure (Static) Close a relationship so that it can only point to instances of

a concrete class

Table 3.3: Good Practice ODPs in the online catalogue. The classification according
to exploitation of automated reasoning is shown close to the ODP name, on the left
column. On the right column a brief explanation of the utility of the ODP is provided.
Boldfaced ODPs have been created by the author: the rest have been taken from the
literature or other online resources (refer to the online catalogue for references).

CHAPTER 3. A CATALOGUE OF ODPS 87

Domain Modelling ODPs
List (Dynamic) Simulate a list data structure, so that a reasoner can compare

different such structures
Adapted SEP (Static) Implement a selective propagation of properties along a transitive

property like part-of: e.g. an infection of the finger is an
infection of the hand, but a broken finger is not a broken hand

Interactor-Role-Interaction Represent interactions, interacting entities, and the roles of entities
(Static) independently: e.g. an interacting agent will have different roles in

different interactions
Sequence (Static) Model phases of processes sequentially
Composite Property Chain A property chain made of combining two chains (e.g. “the son of
(Dynamic) the brother of my father is my cousin”)

Table 3.4: Domain Modelling ODPs in the online catalogue. The classification accord-
ing to exploitation of automated reasoning is shown close to the ODP name, on the left
column. On the right column a brief explanation of the utility of the ODP is provided.
Boldfaced ODPs have been created by the author: the rest have been taken from the
literature or other online resources (refer to the online catalogue for references).

the class named ... Domain (... stands for any ODP name) is a direct subclass
of owl:Thing and it holds all the documentation in annotation values (name, aim,
implementation, etc.). Everything under the class ... Domain represents the se-
mantics (structure) of the ODP. For example, in the case of the Value Partition ODP,
the class is called ValuePartitionDomain. ValuePartitionDomain holds the docu-
mentation (Figure 3.4) in its annotation values (e.g. the annotation property name takes
the value ValuePartition, the annotation property classification takes the value
Good Practice, etc.). Under ValuePartitionDomain there is also a sample of the
structure of a typical value partition (Figure 3.5): a class (regulation) covered by
two disjoint subclasses, positive and negative.

The fact that the documentation and the semantics (the structure) of each ODP are
bundled together in an OWL file allows for the exchange of ODPs with all the neces-
sary information in a single modelling unit. This makes the communication between
developers more fluid. It also allows semantics to be added and to document such
addition in the same OWL file, making the creation of ODPs that conform to the docu-
mentation schema straight away: as the semantic structure is built, the documentation
can be added. By using a convention and a given structure (the ... Domain class,
and a given set of annotation properties, provided by the documentation schema), new
ODPs and their descriptions can be added consistently. Also, as the OWL files follow
a defined convention for structure, they can be automatically parsed to generate other

CHAPTER 3. A CATALOGUE OF ODPS 88

...Domain

owl:Thing

ValuePartitionDomain

owl:Thing name

motivation

structure
...

Regulation

Positive

Negative

Figure 3.2: Basic structure of an OWL file that stores an ODP. On the top, the generic
structure, where a class holds the documentation and the structure of the ODP. On the
bottom, an instance of the generic structure, describing the Value Partition ODP. Sim-
ple arrows represent subClassOf axioms, named arrows annotation properties (name,
motivation, etc.). Only subClassOf axioms are shown, thus the covering axiom and
the disjoint axioms of the Value Partition ODP are not shown, for the sake of simplicity.

formats: the HTML5 and LATEX 2ε (Appendix A) versions of the catalogue were gen-
erated following such procedure. The HTML version of the catalogue entry for the
Value Partition ODP, generated from the OWL file, can be seen in Figures 3.7 and 3.8.

There is not a consensus on how to graphically represent ODPs as there is for
software design patterns (UML) [34]. Usually UML is also used for OWL due to
tool support and familiarity, as UML is well known by programmers and ontologists
alike. UML does not represent OWL semantics in an adequate manner, as, e.g. it is not
a compact representation of OWL axioms, but OWL-native graphical representations
like GrOWL (Graphical OWL) [66] are not sufficiently mature and widespread. As it
can be seen in Figures 3.7 and 3.8, UML is used for graphically representing the ODPs.
The UML profile chosen to represent ODPs in the online catalogue (Figure 3.3) was
presented in [19].

5http://odps.sf.net/

http://odps.sf.net/

CHAPTER 3. A CATALOGUE OF ODPS 89

Figure 3.3: OWL to UML mapping, extended from [19]. Not all the OWL constructs
are shown. An OWL expression can be a named class or an anonymous class (e.g. an
anonymous class made by nested restrictions).

CHAPTER 3. A CATALOGUE OF ODPS 90

Class: ValuePartitionDomain
SubClassOf: owl:Thing
Annotations:

sample "../img/ValuePartition_instance.png"@en,
name "Value Partition"@en,
structure "../img/ValuePartition_abstract.png"@en,
additional_information "The Value Partition built with

classes offers an advantage over the Enumeration (a Value Partition
built with individuals): new subpartitions can be built for each of
the value classes (e.g. very tall)"@en,

classification "Good Practice"@en,
also_known_as "Enumeration, if it is built using

individuals instead of classes"@en,
elements "The main elements are the classes that make up

the Value Partition itself: a class for the attribute and the
subclasses for the values. In this case, Regulation, Positive,
and Negative, respectively. The most important relationship
is the one that links each element of the knowledge domain with the
values of the Value Partition. In this case, IsRegulationOfType
(functional)"@en,

motivation "Reality is full of attributes of elements.
For example, a person can be defined as being short, medium or tall,
and the attribute height can just get those values. Height is said
to be covered or exhausted by those values; the possible heights are
only those three. Biology is full of such situations: metabolism can
only be anabolism or catabolism, membrane transport can only be
uniport, sinport or antiport, regulation is always positive,
negative, and so forth"@en,

reference
"http://www.w3.org/TR/swbp-specified-values"@en,

reference
"http://www.co-ode.org/resources/tutorials/bio/"@en,

aim "To model values of attributes. In this example we
model biological regulation, being negative or positive.
PositiveRegulationOfCellKilling, from GO, is linked
to the appropriate value"@en,

Figure 3.4: Fragment of the OWL file that describes the Value Partition ODP, in MOS.
The class ValuePartitionDomain holds the documentation in the values of the anno-
tation properties, e.g. motivation.

CHAPTER 3. A CATALOGUE OF ODPS 91

Class: ValuePartitionDomain
SubClassOf: owl:Thing

Class: Regulation
SubClassOf: ValuePartitionDomain
EquivalentTo: Negative or Positive

Class: Positive
SubClassOf: Regulation
DisjointWith: Negative

Class: Negative
SubClassOf: Regulation
DisjointWith: Positive

Class: PositiveRegulationOfCellKilling
SubClassOf: ValuePartitionDomain,

is_regulation_of_type some Positive

Figure 3.5: Portion of the OWL file that describes the Value Partition ODP, in MOS.
The class ValuePartitionDomain holds the structure of the ODP in its subclasses.

Figure 3.6: OWL ontology representing the Value Partition ODP in Protégé.
On the left pane, the whole structure of the ontology is shown. As the class
ValuePartitionDomain is selected, the documentation is shown in the form of anno-
tation values.

CHAPTER 3. A CATALOGUE OF ODPS 92

Figure 3.7: A fragment of the HTML entry for the Value Partition ODP. The infor-
mation shown on each section is generated by a script from the OWL file from Fig-
ures 3.4, 3.5, and 3.6. The following sections are shown: name, also known as,
classification, motivation, aim, structure, sample.

Figure 3.8: Continuation from Figure 3.7. Shown sections: elements,
implementation, result, additional information, references, and url.

CHAPTER 3. A CATALOGUE OF ODPS 93

Figure 3.9: Directory structure of the catalogue bundle. The main directory, odp,
contains the directories bin, html, img, latex, owl, and src.

3.4 Using the catalogue

The online catalogue should be explored online by the ontologists, and ODPs used as
a guide in the ontology building process. The online catalogue can be downloaded as
a bundle6, consisting of a root directory, odp, that contains the following directories
(Figure 3.9): bin (the software used to generate the HTML and the LATEX 2ε versions
of the online catalogue), html (the HTML version of the online catalogue), img (the
images for the structure and sample sections of the online catalogue), latex (the
LATEX 2ε version of the online catalogue), owl (an OWL file for each ODP), src (the
source code of the software available in bin).

The HTML and LATEX 2ε versions of the online catalogue can be locally generated
using the software available in the bin directory: the OWL2HTML script for the HTML
version and the OWL2LATEX script for the LATEX 2ε version7. Both scripts are Java
software, make use of the OWL API, and are licensed under the GPL8 so they can be
adapted by anyone for concrete needs.

The online catalogue describes ODPs collected or adapted from the literature and
the internet, and ODPs created by the author. Anyone can add an ODP to the online
catalogue, if it is approved after proposing it in the mailing list or forums9. There
are different criteria for judging the adequacy of an ODP to be included in the online
catalogue:

6http://sourceforge.net/project/showfiles.php?group_id=206639
7Appendix A was generated using OWL2LATEX and only minor corrections were made.
8http://www.gnu.org/copyleft/gpl.html
9http://sourceforge.net/projects/odps/

http://sourceforge.net/project/showfiles.php?group_id=206639
http://www.gnu.org/copyleft/gpl.html
http://sourceforge.net/projects/odps/

CHAPTER 3. A CATALOGUE OF ODPS 94

Parsimonious: In terms of axiomisation, the candidate ODP should be as simple as
possible, without unnecessary complexity. A complex ODP is not necessarily
more useful, as demonstrated by ODPs like the Value Partition and the Closure.
Simple patterns in software engineering have been widely used, like the Single-
ton pattern10, one of the simplest conceivable patterns.

Clear origin: The ODP need not be new, or invented by the author, it can be added
to the online catalogue as a new description of an already existing ODP, e.g. to
describe it consistently and hence make it comparable to other ODPs. In that
case due references should be available.

Clear benefits: It should be clear what are the ODP’s contributions to the modelling.
In other words, what is the difference between using the ODP and not using it?
Why is the resulting new ontology axiomatically richer, more rigorous or more
maintainable?

Clear costs: It should be clear what are the costs and side effects of using the ODP. For
example there are ODPs that make a heavy use of automated reasoning (e.g. the
List ODP11) or ODPs that complicate the subsumption hierarchy (e.g. the Ex-
ception ODP12).

Trivial ODPs: The ODP can be as simple as necessary, but trivial ODPs like language
primitives should not be accepted. For example, a “subclass ODP” does not give
any new information to the ontologists, and hence it should not be accepted in
the online catalogue. However, an ODP describing how to use a subclass axiom
in combination with an equivalent axiom can be considered a proper ODP, as is
the case with the Defined Class Description ODP13.

Required information: Clear, complete and concise information should be available
for the required sections of the documentation schema, as described in Table 3.1,
e.g. motivation, aim, etc. Information for the optional sections should also be
available, but it is not mandatory.

Tested: The proposed ODP should have been used in different ontologies and thor-
oughly tested, especially with regards to automated reasoning.

10http://en.wikipedia.org/wiki/Singleton_pattern
11http://www.gong.manchester.ac.uk/odp/html/List.html
12http://www.gong.manchester.ac.uk/odp/html/Exception.html
13http://www.gong.manchester.ac.uk/odp/html/DefinedClass_Description.html

http://en.wikipedia.org/wiki/Singleton_pattern
http://www.gong.manchester.ac.uk/odp/html/List.html
http://www.gong.manchester.ac.uk/odp/html/Exception.html
http://www.gong.manchester.ac.uk/odp/html/DefinedClass_Description.html

CHAPTER 3. A CATALOGUE OF ODPS 95

3.5 Related resources

There are other ontology best practices repositories available online. For example,
some ODPs are collected on the web site of the W3C BPD14, but they are not de-
scribed following a set documentation schema and are mixed with best practices of
other domains different from ontology engineering.

Another online catalogue of ODPs is maintained as part of the NeOn project15.
The NeOn catalogue16 differs from this one in various aspects. In the NeOn catalogue
the classification of ODPs is different from this one (as mentioned in Section 2.6.2.1,
there are more types of design patterns, related in a hierarchical model [34]), and the
mechanism of distribution is not based on OWL files. Another difference is that, as
explained in Section 2.6.2.1, the NeOn catalogue is focused around Content Ontology
Design Patterns, which differ from the notion of ODPs used in this work, as they
differentiate between the logical and content layers, a distinction lacking in the ODPs
of this work, for the sake of usability. Finally, the target knowledge domain for this
catalogue is biological knowledge, whereas in the NeOn catalogue it is any domain of
knowledge.

3.6 Conclusions

The research question How can we obtain ODPs? has been answered by presenting
an online catalogue of thoroughly described ODPs for the biological knowledge do-
main. ODPs in the online catalogue are described in a consistent manner, using a set
documentation schema for all the ODPs, to ease exploration and comparison of dif-
ferent ODPs. The online catalogue is implemented through OWL files: each ODP is
described in an OWL file, unifying the semantics and the documentation of the ODP in
a single unit that can be shared between developers. The online catalogue is designed
so as to allow added ODPs to conform to the documentation schema. Therefore the
contribution of the chapter is a public online resource that can be used to explore and
retrieve ODPs, offering a guide of the expressivity space of OWL.

14http://www.w3.org/2001/sw/BestPractices/
15http://ontologydesignpatterns.org
16At the time of this writing, the NeOn catalogue was empty.

http://www.w3.org/2001/sw/BestPractices/
http://ontologydesignpatterns.org

Chapter 4

Ontology PreProcessor Language
(OPPL)

Each ODP can be regarded as a modelling unit, thus a concrete set of axioms, docu-
mented and identified by a unique name, to be applied in a concrete ontology. There-
fore there is a need for an automatic method for encapsulating and then applying such
modelling units in ontologies, as expressed by the research question How can we apply

ODPs?

This chapter provides an answer to that question by presenting the Ontology Pre-
Processor Language (OPPL). OPPL is a scripting language for programmatically cod-
ifying changes in the axioms of OWL ontologies: an OPPL script is a set of changes
to be performed in an OWL ontology. Therefore any ODP can be defined in an OPPL
script and applied in an OWL ontology using the OPPL interpreter.

The chapter is organised as follows. Section 4.1 provides the introduction to OPPL:
its origin (Section 4.1.1), a definition and general properties (Section 4.1.2), a compar-
ison between OPPL 1 and OPPL 2 (Section 4.1.3), and an overview of related work
(Section 4.1.4). Section 4.2 describes the detailed usage of OPPL for applying ODPs
in OWL ontologies.

96

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 97

4.1 Description of OPPL

4.1.1 Origin

The idea of OPPL arose as an improvement of the implementation of the Gene Ontol-
ogy Next Generation (GONG) pipeline1 [73].

In the GONG pipeline, the labels of the OWL classes from GO are syntactically dis-
sected, and new axioms are added to those classes according to such dissection (Figure
4.1). The dissection is defined in a regular expression that has associated axioms. For
example, the regular expression (.+?) (development) has the associated axiom
development and acts-on some <1> (<1> refers to the first group matched with
the regular expression, (.+?)). When such a regular expression is interpreted by the
GONG pipeline software2, e.g. if the GO class with the label neuron development is
matched, the following axiom will be added to the class: development and acts-on

some neuron. Therefore, when the pipeline is executed, neuron development will
be redefined as a type of development that acts on neurons. Using the GONG proce-
dure, bio-ontologies can be axiomatically enriched and efficient automated reasoning
applied without much effort, as only some regular expressions and their associated
axioms need to be defined.

The original implementation of the GONG pipeline needed a special OWL ontol-
ogy, the GONG ontology, to be defined by the user, with one class per regular expres-
sion and associated axioms. Configuring the pipeline was cumbersome, as the user
had to follow strict guidelines on how to populate the GONG ontology with regular
expressions and their associated axioms. Also, the complexity of the axioms asso-
ciated to each regular expression was limited: e.g. new entities could not be added,
axioms could not be removed, and only equivalent restrictions with simple fillers (not
nested restrictions) were processed by the GONG pipeline. OPPL was developed to
overcome such limitations: OPPL can be used to define axiomatic changes of arbitrary
complexity to be performed in classes retrieved by processing their annotation values
with regular expressions (Figure 4.2).

Later it became obvious that such a language could be used for any kind of auto-
mated manipulation of OWL ontologies, so OPPL was extended by adding the capabil-
ity of performing DL queries, full MOS support3 and a new implementation presented

1http://www.gong.manchester.ac.uk/
2http://www.gong.manchester.ac.uk/bin/bong_2007.tar.gz
3A MOS syntax parser was already available in the OWL API (see Section 4.1.4), which made

implementing OPPL a matter of adding a thin layer on top of an already existing tool.

http://www.gong.manchester.ac.uk/
http://www.gong.manchester.ac.uk/bin/bong_2007.tar.gz

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 98

Figure 4.1: GONG process example. An ontology (top right) is processed
by the GONG pipeline. One of the regular expressions already defined
((.+?) (development)) matches one of the terms from the ontology (neuron
development), and that term is enriched with the axioms associated with the reg-
ular expression (development and acts-on some <1>). The axioms are added
to neuron development, which becomes equivalent to development and acts-on
some neuron.

in [29].
As OPPL allows any kind of automatic manipulation of the axioms of an OWL

ontology, it can be used to apply ODPs in OWL ontologies. Furthermore, OPPL fulfils
the following requirements of ODPs’ representation and application:

• Select entities, add and remove axioms.

• Shared and intuitive syntax for representing ODPs.

• Encapsulation of ODPs in modelling units.

• Automated application of modelling units.

• Modelling units can be shared for automatic application.

• Replicable application of modelling units.

• Explicit and documented application of modelling units.

• Flexible application of modelling units.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 99

SELECT label "(.+?) (development)";ADD equivalentTo development and acts-on some
<1>;

Figure 4.2: Abstraction of the GONG process example with OPPL. This OPPL script
has the same effect on an ontology as the item of the GONG pipeline described in
Figure 4.1. However, executing this script needs no special setup apart from writing it
and passing it to the OPPL interpreter. It is also much more flexible than the procedure
of Figure 4.1, as any change can be codified in an OPPL script.

4.1.2 Definition and general properties

OPPL is a scripting language for interacting with OWL ontologies on an axiomatic
level. Such interaction is based on querying for entities, and adding or removing ax-
ioms to or from the retrieved entities. Entities and axioms can also be added or removed
without querying. OPPL is a Domain Specific Language (DSL), OWL being the do-
main, as it allows the expression of solutions in the same level of abstraction as the
problem (OWL axioms) [117]. OPPL is also a declarative language, as it states the
axioms that should be added or removed, without control flow structures.

The OPPL syntax is equivalent to MOS, with extra terms (ADD, REMOVE, SELECT)
and tokens (semicolon,<n>). The semicolon delimits each OPPL statement. Two basic
OPPL syntax examples are shown in Figures 4.3 and 4.4. For example, a query can
be formulated in OPPL to retrieve an entity with the reasoner, as shown in Figure 4.3.
Statements can be combined, so actions can be attached to retrieved entities, as shown
in Figure 4.4.

OPPL is focused on entities. For example, if the user wants to add a named class
as a subclass of another named class, e.g. X subClassOf Y, he needs to first add the
class, then remove the axiom subClassOf Thing, and then add the desired subclass
axiom (Figure 4.16). This is like that because OPPL, being entity-centric, automati-
cally translates the instruction ADD Class: X into X subClassOf Thing.

OPPL can work in asserted or inferred mode. In asserted mode, only the explicitly
stated (asserted) axioms are considered, since the reasoner is not used for exploiting
OWL semantics. However, in asserted mode, the user can work with inconsistent
OWL ontologies. For example asserted mode is useful to add an axiom to the direct
subclasses of a given class, without adding the axiom to all the inferred subclasses or
the descendants classes (the transitivity of the subsumption relationship is not taken
into account). In inferred mode, as the reasoner is used, full semantics are available,
thus the asserted and the inferred axioms are accessed by the OPPL interpreter, but the
ontology must be consistent.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 100

SELECT subClassOf has_part some (nucleus or mitochondrion);

Figure 4.3: Retrieving an entity with OPPL. The term SELECT is followed by a MOS
expression and the whole statement is delimited by a semicolon. This statement will
retrieve any entity that has the has part some nucleus or mitochondrion anony-
mous class as a superclass (necessary condition).

SELECT subClassOf has_part some (nucleus or mitochondrion);ADD equivalentTo
part_of some tissue;

Figure 4.4: Retrieving an entity and adding axioms to it with OPPL. The SELECT state-
ment is followed by an action statement that will add the anonymous class part of
some tissue as an equivalent class (necessary and sufficient condition) to the re-
trieved entities.

For example, the query SELECT subClassOf part of some cell will deliver
different results depending on the use of asserted or inferred mode. In asserted mode,
only the direct parts of the cell will be delivered (e.g. nucleus), as the transitivity of
part of is not exploited. However, in inferred mode, the indirect parts of the cell
will also be delivered. For example nucleolus is only asserted to be a part of the
nucleus, but as the nucleus is part of the cell, and part of is transitive, nucleolus is
also considered by the reasoner to be a part of the cell and therefore delivered.

4.1.3 OPPL 1 and OPPL 2

There are currently two versions of OPPL: OPPL 1 and OPPL 2. OPPL 1 was devel-
oped by the author [30, 29, 10], and it is implemented as a standalone command line
application4; OPPL scripts must be written in flat files5 and passed to the interpreter
via command line arguments (Figures 4.5, 4.6, and 4.7). OPPL 2 is being developed
by Luigi Iannone, also from the Bio Health Informatics Group, in collaboration with
the author, and it is implemented as a Protégé plugin6 (Figures 4.8, 4.9) [62, 61]. The
differences are summarised in Table 4.1.

The syntactic differences between OPPL 1 and OPPL 2 reflect the semantic dif-
ferences between both versions (Figures 4.10 and 4.11). In OPPL 2, any entity of the
query can be a variable, with the constraint that a variable can only be bound by a
named entity and not by a complex expression (Figure 4.12). Also, OPPL 2 is strongly

4http://oppl.sourceforge.net/
5Comments, in OPPL 1 flat files, are any line that starts with the # symbol, and are skipped by the

OPPL interpreter. Such convention allows for Perl style syntax highlighting in source editors to edit
OPPL scripts.

6http://www.cs.man.ac.uk/˜iannonel/oppl/

http://oppl.sourceforge.net/
http://www.cs.man.ac.uk/~iannonel/oppl/

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 101

OPPL 1 OPPL 2
Single variable Multiple variables
Centred on OWL entities Centred on OWL axioms
No expression evaluation Expression evaluation before execution
Command line Protégé plugin
Annotation values processing No annotation values processing
(e.g. regular expressions)

Table 4.1: Comparison between OPPL 1 and OPPL 2. The main difference between
OPPL 1 and OPPL 2 is that OPPL 1 cannot process expressions with multiple variables.

typed, that is, the types of the variables must be defined in each query: e.g. in the ex-
pression ?x:CLASS, any entity that binds the variable ?x must be an OWL class. The
fact that in OPPL 2 only typed single entities can be bound to variables makes the
querying computable, as it can be reduced to a list of DL queries and their combina-
tions. The lack of variables makes OPPL 1 rather “local” to the ontology that is being
modified, as the user needs some knowledge of the entities that are referenced in the
axioms of the ontology before interacting with it. OPPL 2 can work with completely
abstract structures, making it more flexible.

Another difference is that OPPL 2 more closely resembles OWL 2 semantics, as
its syntax is centred on axioms rather than entities. Therefore, coming back to the
example on Section 4.1.2, the axiom X subClassOf Y can be directly added, without
having to add any further instructions, as is the case in OPPL 1.

OPPL 2 can also work in asserted mode or inferred mode. Both OPPL 1 and OPPL
2 can work with the Pellet and FaCT++ reasoners, and OPPL 1 can additionally work
with any DIG7 compliant reasoner.

Finally, OPPL 2 is further different to OPPL 1 in that it includes an evaluation
step: whenever an OPPL script is introduced by the user, it is evaluated (Figure 4.8)
and the axioms that will be affected are displayed (Figure 4.9), so the user can choose
to execute the script or not.

On the other hand, OPPL 1 is able to process annotations, which is of special im-
portance when dealing with bio-ontologies, as, e.g. GO presents structured annotation
values [30, 73]. The annotation processing is implemented via regular expressions: a
query is built using a regular expression, and entities whose annotation values match
the regular expression are retrieved. Not only the entities are retrieved, the content of
the matched string is also made available for further actions (Figure 4.13).

7http://dig.sourceforge.net/

http://dig.sourceforge.net/

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 102

Select entities via semantics and add new axioms

SELECT equivalentTo part_of only (mitochondrion or chloroplast);
ADD subClassOf has_function some energy_production;

OPPL flat file

OPPL.jar

ontology.owl

new_ontology.owl

Figure 4.5: OPPL 1 interpreter. An OPPL flat file is passed to the interpreter
(OPPL.jar), together with the target ontology (ontology.owl). After executing the
instructions from the flat file and changing the target ontology, a new ontology is gen-
erated, with the changes in it (new ontology.owl).

Create the properties: immediately_precedes and immediately_preceded_by
NOTE: reasoning didn’t work in queries about the inverse’s superproperty,
we don’t know why

ADD ObjectProperty: immediately_preceded_by;ADD functional;
ADD subPropertyOf preceded_by;

ADD ObjectProperty: immediately_precedes;ADD functional;
ADD subPropertyOf precedes;

General cell cycle: G1 -> S -> G2 -> M

SELECT Class: CCO_P0000313;ADD subClassOf immediately_precedes some
CCO_P0000315;

SELECT Class: CCO_P0000315;ADD subClassOf immediately_preceded_by some
CCO_P0000313;ADD subClassOf immediately_precedes some CCO_P0000314;

SELECT Class: CCO_P0000314;ADD subClassOf immediately_preceded_by some
CCO_P0000315;ADD subClassOf immediately_precedes some CCO_P0000039;

SELECT Class: CCO_P0000039;ADD subClassOf immediately_preceded_by some
CCO_P0000314;

Figure 4.6: OPPL flat file used for applying the Sequence ODP in CCO. This flat file,
when executed, adds some axioms related to the Sequence ODP9. CCO P0000313: G1,
CCO P0000315: S, CCO P0000314: G2, CCO P0000039, M.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 103

Query 14: Proteins located in nucleus and cytoplasm: travelling?

ADD Class: query_14;ADD subClassOf query;REMOVE subClassOf Thing;
ADD comment "Proteins located in nucleus and cytoplasm: travelling?";
ADD oppl_query "CCO_U0000005 and (located_in some (part_of some CCO_C0000323
or CCO_C0000323)) and (located_in some (part_of some CCO_C0000252 or
CCO_C0000252))";

SELECT subClassOf CCO_U0000005 and (located_in some (part_of some CCO_C0000323
or CCO_C0000323)) and (located_in some (part_of some CCO_C0000252 or
CCO_C0000252));ADD subClassOf query_14;

Figure 4.7: OPPL flat file used for performing a DL query against CCO. This flat
file, when executed, creates a class named query 14. The next step queries the
reasoner for subclasses of the anonymous class CCO U0000005 and (located in
some (part of some CCO C0000323 or CCO C0000323)) and (located in
some (part of some CCO C0000252 or CCO C0000252)), and adds them as a
subclass of query 14, providing the answers to the query. CCO U0000005: protein,
CCO C0000323: cytoplasm, CCO C0000252: nucleus.

Figure 4.8: OPPL 2 Protégé plugin. The user enters an OPPL script in the top pane.
In this case, the script selects any individual that has a hasSister and a hasBrother
relationships and makes the individual an instance of the class Result.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 104

Figure 4.9: OPPL 2 Protégé plugin: evaluate and execute. The plugin evaluates the
OPPL script entered by the user, and shows the axioms that will be affected. If the user
is satisfied, the script can be executed.

SELECT subClassOf participates_in some (mitosis or meiosis);ADD equivalentTo
has_function some regulation_of_cell_cycle;

Figure 4.10: OPPL 1 syntax example. The script selects any class that is a subclass
of the anonymous class participates in some (mitosis or meiosis), and adds
the anonymous class has function some regulation of cell cycle to it as an
equivalent class.

?x:CLASS SELECT ?x subClassOf participates_in some (mitosis or meiosis)
BEGIN ADD ?x equivalentTo has_function some regulation_of_cell_cycle END;

Figure 4.11: OPPL 2 syntax example. The result of executing this script is equivalent
to the result of executing the script shown on Figure 4.10. The main difference with
OPPL 1 is the use of a strongly typed variable, ?x:CLASS. The OPPL 2 syntax also
includes other tokens like BEGIN and END.

?x:CLASS, ?y:CLASS SELECT ?x subClassOf participates_in some (mitosis or ?y)
BEGIN ADD ?x equivalentTo has_function some ?y END;

Figure 4.12: OPPL 2 syntax example with multiple variables. This script will select
any named class (?x) that is a subclass of the anonymous class participates in
some (mitosis or ?y), being ?y any named class. Then, it will add the condition
has function some ?y to the retrieved classes (?x), substituting ?y with any named
classes that match the query.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 105

SELECT label "(.+$) (.+$) of (development)";ADD subClassOf regulation_type some
<1>;ADD subClassOf <2>;ADD subClassOf acts_on_process <3>;

Figure 4.13: Annotation processing with OPPL 1. The OPPL interpreter assumes that
the tokens from the matched string also exist in the ontology as entity URI fragments or
rdfs:label values; if they are not, the OPPL statement is simply ignored. For exam-
ple, if the class with the label positive regulation of development is matched,
OPPL will try to find classes in the ontology with the following strings as URI frag-
ments or rdfs:label values: positive, regulation, development (corresponding
to <1>, <2>, and <3> respectively).

4.1.4 Related work

OPPL is made of two parts: querying and actions (adding or removing axioms). They
are both independent, i.e. OPPL can be used solely for querying or solely for actions.
However, the combination of both (defining actions to be performed in entities re-
trieved by querying) is what makes OPPL useful, as such functionality allows the ap-
plication of ODPs in different parts of an ontology.

In such combination, the closest to OPPL is the DL-safe fragment of SWRL (Se-
mantic Web Rule Language) [76]. OPPL differs from it in that OPPL allows the re-
moval of axioms10, includes annotation querying and it can add axioms without a
condition being fulfilled.

OPPL can also be compared in the querying and actions combination with the
OWL Macros presented in [121], but they are different because OWL Macros cannot
remove axioms (OPPL can remove and add axioms), and OPPL works by exploiting
the semantics of OWL, not just the asserted axioms. OPPL and the OWL Macros also
differ in the expertise required: XML/RDF in the case of the OWL Macros and MOS
in the case of OPPL. MOS has been proposed as an OWL 2 working draft11, and it is
shared by many developers and ontology editors like Protégé and TopBraid composer.
Therefore, it is likely that bio-ontologists are more used to MOS than RDF/XML, as
performing OWL modelling using such editors already implies some knowledge of
MOS, and MOS is one of the most used human-friendly OWL syntaxes.

On the querying side, SPARQL-DL [99] can also be used to query OWL ontologies
but OPPL offers a greater expressivity, as expressions of any complexity can be used
to query the reasoner.

On the actions side, OPPL can be regarded as a reduced and abstracted version of

10The REMOVE feature of OPPL makes it non-monotonic with regards to automated reasoning: the
order of OPPL REMOVE statements should be taken into account when executing them [61].

11http://www.w3.org/TR/owl2-manchester-syntax/

http://www.w3.org/TR/owl2-manchester-syntax/

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 106

OWLClass a = dataFactory.getOWLClass("A");
OWLClass b = dataFactory.getOWLClass("B");
OWLClass c = dataFactory.getOWLClass("C");
Set<OWLClass> set = new HashSet<OWLClass>(2);
set.add(b);
set.add(c);
OWLDescription intersection = dataFactory.createOWLObjectIntersection(set);
OWLAxiom axiom = dataFactory.getOWLSubClassAxiom(a,intersection);
ontologyManager.applyChange(new AddAxiom(ontology,axiom));

Figure 4.14: Java code for adding a subclass axiom using the OWL API. This code
consists of 9 Java instructions, and some of the instructions present further complexity,
requiring knowledge about classes like ontologyManager or dataFactory.

SELECT Class A;ADD subClassOf B and C;

Figure 4.15: OPPL script for adding a subclass axiom. This OPPL script is equiva-
lent to the Java code shown in Figure 4.14, but only one statement is needed and the
complexity of such a statement is directly proportional to the complexity of the axiom,
apart from the SELECT and ADD instructions.

the OWL API that works with a further abstraction level, that is, axioms instead of
programmatic procedures. This means that the ontologist can automate many actions,
which is usually done with the OWL API, without knowing programming12. The
complexity of such OPPL actions is directly proportional to the complexity of the
axioms, regardless of the underlying programming complexity. For example, using the
OWL API, adding the axiom A subClassOf C and B would be done using the code
shown in Figure 4.14 (example taken from [61]). The same action can be performed in
OPPL in a much shorter instruction (Figure 4.15), and without having to know about
the OWL API structure (e.g. the Command design pattern [59]) or how to use concrete
OWL API elements like ontologyManager or dataFactory.

4.2 Using OPPL

This section describes how OPPL can be used with concrete examples, and the advan-
tages of such functionalities. The main functionality of OPPL is to apply ODPs, but it
can be used to automatically apply any modelling. The advantages of applying ODPs
with OPPL can be extrapolated to any other modelling applied with OPPL. OPPL can
also be used to automate actions in pipelines that process or create OWL ontologies.

12The OWL API offers a wider range of functionalities, but the target users of this research, bio-
ontologists, seldom use them.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 107

The automated application of ODPs is possible because each ODP can be codi-
fied in an OPPL script and applied at will (Figure 4.17). Therefore, OPPL offers the
possibility of codifying ODPs as modelling units that can be executed off-the-shelf.
Such application is replicable because each developer need only take the script from
another developer and apply it, making modelling consistent with regards to different
developers or different stages of development.

The modelling process also becomes consistent in different parts of the same on-
tology. The procedure of applying ODPs in different parts of an ontology via queries
is especially useful, as adding complex modelling manually in different parts of an
ontology can be tedious and error prone. For example, OPPL was used to apply the
Entity-Quality ODP13 in GO14, by querying GO using annotation values, as described
in the use case of Section 6.2.3. When the script (Figure 4.16) was applied in GO, 24
classes out of circa 20,000 were captured and the ODP was correctly applied on them.
Recreating such procedure manually would be at least a few hours of work, and the
result would most probably be incomplete.

The above procedure for applying the Entity-Quality ODP in GO relies on the
ontology having structured annotation values, which is common in bio-ontologies and
especially in GO, but it could be that such an approach is not appropriate for other
ontologies. However, even in the case in which the ODP is applied in too many entities
(the regular expression matches too many annotation values), it is preferable to remove
some axioms from those entities, which can be easily traced in OPPL logs, instead
of applying the modelling manually. Having to select concrete parts of an ontology
is a common problem to any automated modifying procedure, and OPPL solves it by
providing the possibility of querying for annotation values, DL queries, asserted simple
queries, or selecting entities by name (URI fragment).

The usage of OPPL and ODPs means that the modelling process becomes explicit,
as the modelling steps are written in OPPL scripts, making modelling traceable, and
documented, as comments can be added in the scripts about the rationale behind each
modelling decision15.

13http://www.gong.manchester.ac.uk/odp/html/Entity_Quality.html
14It was applied in CCO, but CCO includes GO.
15OWL 2 allows the annotation of axioms and therefore annotation of modelling as it is possible in an

OPPL script, but OPPL comments are more compact as one comment refers to many axioms in the same
script. In the same way that OPPL concentrates modelling that later, when applied, will be scattered in
different parts of the ontology, it concentrates comments, and therefore offers an advantage over using
only OWL annotations. In fact, OWL annotations can also be added using OPPL statements, so OPPL
comments and OWL annotations can be used at the same time, exploiting the benefits of both.

http://www.gong.manchester.ac.uk/odp/html/Entity_Quality.html

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 108

However, OPPL expresses modelling by splitting it in procedures, and therefore
different parts of the ODP are added in different OPPL statements. Thus OPPL does
not naturally render the structure of the ODP, it does so implicitly in different OPPL
statements that, when executed, will result in the whole ODP being recreated in the
ontology. Languages like XSLT do offer the possibility of applying OWL Macros that
more naturally (statically) render ODPs [121], however such renderisation poses the
problem of having to know XSLT: as mentioned, MOS is more likely to be understood
by a bio-ontologist working with OWL.

OPPL makes modelling flexible, as complex modelling can be tried out and dis-
missed or accepted by simply executing an OPPL script. Doing modelling manually in
an ontology editor and then doing “undo”-s is inefficient and error prone, as plenty of
independent steps must be cancelled. Modifying a script is more efficient than modify-
ing an ontology, if complex modelling has been applied: e.g. the ontologist can delete,
out of a script with 25 instructions executed sequentially, the instructions from 10 to
20 and reapply the script, which is difficult to do in an ontology editor where the 25
steps have been done manually. Also, different modelling alternatives (e.g. different
ODPs for modelling modifiers [30]) can be easily tested, or prototypes built quickly to
decide on their benefit for the ontology in early stages of the development. Different
ontology versions can be aligned with OPPL scripts, making it possible to keep a his-
tory of changes or simply experiment with different development branches of the same
ontology.

Applying ODPs in OWL ontologies with OPPL can be done using the following
methods (Figure 4.18):

1. Adding complete structures (OPPL 1 and OPPL 2): A complete structure
can be built from scratch, with named entities, by applying an already defined
OPPL script (Figure 4.19). This means that the entities should be renamed by the
ontologist in the OPPL script, if the script was provided by another developer.
Such a renaming procedure is more efficient than renaming entities of an im-
ported mini-ontology, as all the entities are concentrated in a compact file. Also,
many bio-ontologies follow the practice of separating the class id and its name
(provided in a rdfs:label value) which means that entities can be renamed by
further OPPL mapping statements.

2. Selecting concrete entities and adding axioms to them (OPPL 1 and OPPL
2): Entities can be selected and complete ODPs or fragments of ODPs can be

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 109

applied on them. The selection can be done using different criteria to retrieve
entities:

(a) Retrieve by annotations (OPPL 1): A regular expression is defined, like
(.+?) regulation of (.+?), to be matched against the annotation val-
ues of the entities of the ontology, along a given annotation property (usu-
ally rdfs:label) (Figure 4.20). When a match happens (e.g. positive

regulation of cell killing), the entity is stored for further modifi-
cation and the content of the annotation value is also stored, so it can be
used for creating axioms, via the <n> keyword (n can be any number). The
<n> keyword is a pointer to the groups of the annotation value, so <1>

would point to the first group, namely positive. OPPL tries to resolve
such a group against the ontology, in the reasonable expectation that an en-
tity with the name (URI fragment) or label positive will be referenced; if
such reference does not exist, the interpreter simply skips the OPPL state-
ment.

(b) Retrieve by semantics (OPPL 1 and OPPL 2): An OWL expression of
arbitrary complexity is defined and the reasoner is queried for named en-
tities that are related to such an anonymous class (e.g. as a subclass or
equivalent class) (Figure 4.21).

3. Selecting abstract structures and adding axioms to them (OPPL 2): The
fact that OPPL 2 allows for variables in any position of the expression makes
it possible to define structures in abstract terms, without named entities (Figure
4.22). This approach is more general than that of OPPL 1, and OPPL 2 can
also be used for retrieving by semantics using only named entities (i.e. OPPL 2
includes OPPL 1, except the annotation processing functionality, absent in OPPL
2).

Besides applying ODPs, OPPL can also be used for axiomatically enriching or
cleansing an ontology in an automatic way, e.g. if the ontology is periodically down-
loaded from an outside resource. For example, CCO is enriched using OPPL as a part
of a bigger pipeline (Figure 4.6). OPPL is also useful for automating the manipulation
(queries, removing or adding axioms) of ontologies that are too big to be manipulated
with GUI based tools like Protégé. Again, in the case of CCO, OPPL is used for defin-
ing and executing queries (Figure 4.7): the OPPL script is executed in the background

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 110

######### Applying the Entity-Quality ODP in CCO #########

Quality values

ADD Class: modifier;

ADD ObjectProperty: has_quality;

ADD Class: position;ADD subClassOf modifier;REMOVE subClassOf Thing;

ADD Class: apical;ADD subClassOf position;REMOVE subClassOf Thing;

ADD Class: basal;ADD subClassOf position;ADD disjointWith apical;
REMOVE subClassOf Thing;

constrain the quality values to the entities (CCO_C0001882 = cell part)

SELECT Class: position;ADD equivalentTo apical or basal;ADD subClassOf
inv (has_quality) only CCO_C0001882;

not having a position is legal

SELECT Class: CCO_C0001882;ADD subClassOf has_quality max 1 position;

In order to apply the ODP in different places of the ontology, we need
a general condition that will catch different target classes (doing it
by hand would be tedious, inefficient and would betray the aim of ODPs).
We will define a regular expression "(basal|apical) (.+?)": <1> refers
to the first group from the string that matches the regular expression

SELECT label "(basal|apical) (.+?)";ADD subClassOf has_quality exactly 1 <1>;

Figure 4.16: An extract of an OPPL flat file for applying the Entity-Quality ODP in
GO. Image taken from [30].

for a long time and the ontologist checks the result when finished, something inefficient
with a GUI based tool.

4.3 Conclusions

The contribution of this chapter is OPPL, a scripting language that offers the possibility
of programmatically changing the axioms of an OWL ontology, and hence apply ODPs
on it. Using OPPL, ODPs are stored in OPPL scripts as modelling units, to be applied
at the ontologist’s will. OPPL fulfils the following requirements of ODPs’ application:

Select entities, add and remove axioms: The most basic operation for applying ODPs
is to be able to select entities, and add or remove axioms.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 111

Figure 4.17: Using OPPL to apply ODPs in an OWL ontology. An OWL ontology is
shown in the middle. On the left, the same ODP is applied in different parts of the
ontology. On the right, different ODPs are applied in different parts of the ontology.
Circles represent classes, solid lines subClassOf axioms, dotted lines other axioms
(e.g. restrictions), and arrows represent the application of an ODP in the ontology.

Using
OPPL Adding complete structures

Selecting abstract structures
 and adding axioms to them

Selecting concrete entities
 and adding axioms to them

Retrieve by annotations

Retrieve by semantics

OPPL 1

OPPL 2

Figure 4.18: Using OPPL: methods for applying ODPs. On the left, different ways of
applying ODPs are described. On the right, the different versions of OPPL are shown
in boxes. Some actions can be performed by both versions, and other actions only by
OPPL 1 or OPPL 2.

ADD Class: Regulation;ADD Class: Positive;ADD subClassOf Regulation;
ADD Class: Negative;ADD subClassOf Regulation;ADD disjointWith Positive;
SELECT Class: Regulation;ADD equivalentTo Positive or Negative;

Figure 4.19: Adding the complete structure of the Value Partition ODP. The structure
is added in a procedural manner. The entities can be later renamed by the ontologist,
but the structure of the ODP remains on the ontology.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 112

SELECT label "(.+?) regulation of (.+?)";ADD subClassOf regulationType some <1>;

Figure 4.20: Adding a fragment of the Value Partition ODP by retrieving entities via
their annotations. Any entity with the rdfs:label value matching the regular ex-
pression (.+?) regulation of (.+?) will be retrieved, and the anonymous class
regulationType some <1> added as a superclass to it, after resolving <1>. For
example, if the class with the rdfs:label value positive regulation of cell
development is retrieved, regulationType some positive will be added to it as a
superclass.

SELECT subClassOf PositiveRegulation and acts_on only CellKilling;ADD subClassOf
regulationType some Positive;

Figure 4.21: Adding a fragment of the Value Partition ODP by retrieving entities
via their axioms. The reasoner is queried for the subclasses of the anonymous class
PositiveRegulation and acts on only CellKilling, and the anonymous class
regulationType some Positive will be added to all the retrieved classes as a su-
perclass.

?x:CLASS, ?y:CLASS SELECT ?x subClassOf PositiveRegulation and acts_on only ?y;
BEGIN ADD ?x subClassOf (regulationType some Positive) and (acts_on some ?y)
END;

Figure 4.22: Adding a fragment of the Closure ODP by retrieving an abstract
structure. The reasoner is queried for any subclass (?x) of the anonymous
class PositiveRegulation and acts on only ?y, being ?y any named class that
matches the expression. The anonymous class (regulationType some Positive)
and (acts on some ?y) is added as a superclass to the retrieved classes after resolv-
ing ?y, effectively closing the relationship acts on.

CHAPTER 4. ONTOLOGY PREPROCESSOR LANGUAGE (OPPL) 113

Shared and intuitive syntax for representing ODPs: MOS is a widely used and in-
tuitive syntax for representing OWL, therefore providing an ideal syntax for rep-
resenting ODPs for OWL ontologies.

Encapsulation of ODPs in modelling units: ODPs can be codified in OPPL scripts,
creating self-contained modelling units.

Automated application of modelling units: Each ODP, being codified in an OPPL
script, can be executed against an OWL ontology and the axiomisation described
in the ODP transferred to the ontology, in an automatic manner.

Modelling units can be shared for automatic application: The scripts can be shared
by the developers and executed at will.

Replicable application of modelling units The scripts can be consistently applied in
different parts of the ontology, on different development stages, in different
branches or versions of the ontology, or by different developers.

Explicit and documented application of modelling units: By using the scripts for
applying ODPs, the modelling steps become explicit and traceable, and docu-
mentation about the modelling can be added as comments on such scripts.

Flexible application of modelling units: By using OPPL scripts, experimentation with
new modelling units can be done more efficiently, as any step of the modelling
(even intermediate steps) can be cancelled.

Therefore, the chapter has provided an answer to the research question How can

we apply ODPs?

Chapter 5

Evaluation framework

The central problem that this thesis tackles is the lack of rigour and axiomatic richness
of many current bio-ontologies, proposing the use of ODPs as a means for creating
richer and more rigorous bio-ontologies. In order to test the benefit of the use of ODPs
in bio-ontology engineering, ODPs need to be applied in real bio-ontologies and the
results of such application evaluated. This chapter describes an evaluation framework
for assessing the change in bio-ontology quality as a result of applying ODPs (ontology
quality), the quality of the applied ODPs (ODP quality) and how each ODP affects
the process of building bio-ontologies (ontology engineering). Therefore, this chapter
answers the research questions How can we assess ODP quality?, How can we assess

the impact of ODPs in bio-ontology engineering?, and How can we assess the change

of quality of bio-ontologies as a result of applying ODPs?

The chapter is organised in two parts. Section 5.1 provides an introduction to the
evaluation framework, comparing the ontology quality evaluation with related liter-
ature. The remaining of the chapter provides a detailed overview of the framework
itself, in Section 5.2 (ODP quality), Section 5.3 (ontology engineering) and Section
5.4 (ontology quality).

5.1 Introduction

The evaluation of the results from this work lies in three areas: ODP quality, ontology
engineering, and ontology quality. The whole framework is shown in Figure 5.1.

ODP quality is a combination of the features and possible deficiencies of a given
ODP, in comparison to other ODPs. Ontology engineering analyses how a given ODP

114

CHAPTER 5. EVALUATION FRAMEWORK 115

Structural

Formalisation
Rigorous relations
Cohesion
Tangledness
Redundancy
Consistency
Structural accuracy
Domain coverage

Functionality Competence adequacy
Interoperability

Reference ontology
Controlled vocabulary
Schema and value reconciliation
Consistent search and query
Knowledge acquisition
Clustering and similarity
Indexing and linking
Results representation
Classifying instances
Text analysis
Guidance and decision trees
Knowledge reuse
Inferencing

Reliability Maturity
Robustness
Authority

Technological
Knowledge

Usability Readability
Reusability

Efficiency
Maintainability

Stability
Analysability
Changeability
TestabilityQuality in use Effectiveness

User satisfaction Popularity
Engagement

Ontology
engineering

Focused development
Fast development
Prototyping
Reengineering
Documentation of the process
Communication between developers
Predictability of consequences
Debugging
Principled modelling

Ontology
quality

ODP
quality

Modelling probability
Modelling benefit
Use efficiency
Specificity
Documentation clarity
Modelling toll
Reasoning toll
Inconsistency risk
Tolerance to bad practice
Maintainability
Community commitment

Figure 5.1: Evaluation framework. The evaluation framework is divided into three
areas: ODP quality, ontology engineering and ontology quality. Each area is further
divided into different criteria. Each criterion is assigned a value.

CHAPTER 5. EVALUATION FRAMEWORK 116

affects the process of building an ontology, also in comparison to other ODPs. On-
tology quality evaluates the improvement of a bio-ontology’s quality after ODPs have
been applied, as defined by the ISO 9126 standard. Therefore ODP quality and ontol-
ogy engineering focus on ODPs, whereas ontology quality focuses on ontologies.

Ontology evaluation is an open problem, and established solutions have not been
agreed. There are different ontology evaluation methods, focused on different aspects
of ontologies, but none is widely accepted, especially in the case of OWL DL [122].
For example, there are evaluation methods that focus on formal correctness, like Onto-
clean [52, 120], which analyses the correctness of a taxonomy following some philo-
sophical principles like “rigidity”. Ontoclean is not appropriate for evaluating the im-
pact of ODPs, as they rarely modify the modelling principles behind the taxonomic
structure1.

Other methods have been developed to choose adequate ontologies via ranking
[4, 113, 114]. These methods are not adequate as they do not assess the impact of
ODPs thoroughly, they simply point to which is the best ontology for a given task from
a group of ontologies, especially in the context of the Semantic Web.

In terms of ontology quality, one of the most thorough evaluation methods is the
one described in [36]. However, it includes the use of ODPs as a sign of good ontology
quality. Thus, the very idea we are trying to test in this work, namely that the use
of ODPs improves ontology quality, is already an assumption in such an evaluation
method.

In general, most of the ontology quality evaluation methods, even though they in-
clude assessment criteria for structure, they lack assessment criteria for other aspects
like functionality or maintainability. There are many aspects of ontologies that need
to be evaluated and different evaluation strategies focus upon different aspects with
greater or lesser success. It is unlikely that one strategy will fulfil the need to evaluate
multiple aspects: fitness for purpose; rigour and axiomatic richness; domain correct-
ness; ontological formality; etc.

The ISO 9126 standard for software quality evaluation includes aspects like func-
tionality or maintainability, and therefore it was adapted to evaluate ontology quality
[32]. We assume that an ontology can be considered to be equivalent to a software
artefact, as the ISO 9126 standard defines software in a broad sense, e.g. including

1This does not mean that Ontoclean is not a valid modelling principle, as it can be used e.g. for
choosing the primitive axes in the Normalisation ODP. Ontoclean can also guide the developers in the
implementation of the Upper Level Ontology ODP.

CHAPTER 5. EVALUATION FRAMEWORK 117

documentation and executables. Therefore such definition can be extended to ontolo-
gies, as they can be regarded as software artefacts that can be queried for exploiting
knowledge contained in them. Also, using practices from software engineering in on-
tology engineering has already been demonstrated to be useful [69, 21, 48, 39, 38].
We added one ontology-specific criterion, structure, to complete the framework, as
detailed in Section 5.4.

The ISO 9126 is an internationally established standard that provides a systematic
framework that has been used previously e.g. for evaluating e-Learning systems [22].
The ISO 9126 standard does not attempt to provide detailed metrics of every aspect of
software quality; rather, it provides a comprehensive model that users and developers
alike can use as a common language when assessing software quality, and agree on a
concrete quality level. Therefore the output of the application of the ISO 9126 standard
standard is not a numerical or absolute value, and it depends on the community that is
applying the ISO 9126 standard. Hence, the ISO 9126 standard fits with the scenario
of this thesis, where we are comparing an ontology after and before ODPs application:
it is a relative evaluation, not an absolute evaluation that requires a concrete result.

In each of the three areas (ODP quality, ontology engineering and ontology qual-
ity), different criteria are defined, and one out of three values (1, 3 or 5) is given to
each criterion (the criteria are described in detail in Sections 5.2, 5.3 and Section 5.4).
A higher numerical value means a higher quality, thus a bigger benefit for the ontology
or the ontology building process. In the case of ODP quality and ontology engineering
areas, the score is given to the ODP, and in the case of ontology quality the score is
given to an ontology. The numbers are not absolute values, as they are used to com-
pare different ODPs (ODP quality and ontology engineering) or an ontology after and
before ODP application (ontology quality). Using the score values, a radar graph is
created for each ODP and the ontology on which the ODP has been applied. The us-
age of radar graphs provides an intuitive idea of which are the best ODPs for a given
task, in which way they affect the ontology engineering process, and how ontology
quality changes.

A completely rigorous and thorough evaluation is not feasible as the lack of eval-
uation methodologies in ontology building, due to the field’s immaturity, permeates
the three areas. There has been some work in ontology quality evaluation (reviewed
above), but none in ODP quality or ontology engineering evaluation. Therefore, sub-
jectivity is inevitable, especially when assigning the scores to the ODPs and ontologies
in each evaluation criterion. Instead of aiming at a completely rigorous evaluation, we

CHAPTER 5. EVALUATION FRAMEWORK 118

intend to provide the elements that the user can use to make an informed decision with
regards to which ODPs to use. Also, we provide examples of how such elements can
be used to assign values to ODPs and ontologies, and we provide a rationale (and hence
orientation for potential users) for such an assignment.

5.2 ODP quality

Modelling probability: As mentioned in Chapter 1, ODPs can be seen as “beacons”
on a expressivity space composed of an infinite number of models, each model
being a unique combination of axioms. Thus, ODPs “attract” the modeller to
a concrete model in the expressivity space. An usefulness measure is to ask
with what probability would the modeller arrive at such a concrete model in the
expressivity space without the aid of the ODP. The modelling probability also
depends on the KR expertise of the modeller, thus, the same ODP will have dif-
ferent modelling probabilities for different modellers, but a general tendency of
modelling probability can be established. For example the Closure ODP would
have a high modelling probability (low score): it is highly probable for a mod-
eller to realise that, in order to have a closure, a universal and existential restric-
tion should be combined. On the other hand, the List ODP would have a low
modelling probability (high score), as it is unlikely that a modeller would end
up building a List ODP structure spontaneously, due to its complexity. Lowest
modelling probability = 5.

Modelling benefit: To what degree does the ODP represent the source knowledge
–the idea that needs to be represented in the ontology– in a concrete model?
For example, the Closure ODP is highly fit for purpose (high modelling benefit):
there is only one way, in OWL, to represent the idea of closure along a restriction
without using a functional property. However, the Entity-Quality ODP is an
example of the opposite situation: there are at least another two ODPs that can
represent the same idea with different axioms, and, hence, different features and
problems (low modelling benefit). An ideal ODP would have a low modelling
probability and a high modelling benefit. Highest modelling benefit = 5.

Use efficiency: Once applied, how efficient is the exploitation of the ODP? For exam-
ple, adding a new primitive class in a normalised ontology, normalised by the
Normalisation ODP, is relatively easy (high use efficiency) compared to creating

CHAPTER 5. EVALUATION FRAMEWORK 119

a new List structure using the List ODP (low use efficiency). That is because
adding a new List structure is much more complex. Highest use efficiency = 5.

Specificity: There are ODPs that are generic (e.g. Closure ODP) and there are other
ODPs that are more specific (e.g. Species ODP). The specificity reflects the ap-
plicability of the ODP in different domains: the more specific the ODP, the fewer
domains in which it can be applied. Least specific = 5.

Documentation clarity: How thoroughly is the ODP documented, and how clear is
such documentation. For example, the more optional sections of the online cat-
alogue present content, the more useful the documentation will be. Also, the
ODP should be documented using a language suitable for non-experts in KR.
The documentation should be clear enough for the user to realise the benefits
and problems related to the given ODP, and in which situation should the ODP
be used. Clearest documentation = 5.

Modelling toll: What are the axiomatic consequences of using the ODP? There are
ODPs that impose a structure that can have more serious consequences for the
overall modelling, in terms of general structure of the ontology, querying, main-
tenance, etc. For example, the Upper Level Ontology ODP determines the whole
structure of the ontology, whereas the Value Partition ODP is a self-contained
modelling unit, affecting only a small portion of the target ontology. In another
example, adding the List ODP adds a lot of axioms, adding the Closure ODP
does not. Lowest modelling toll = 5.

Reasoning toll: How does automated reasoning performance decrease by adding the
ODP to the target ontology? Especially in the case of dynamic ODPs, there
are ODPs that demand a lot of automated reasoning resources, because of their
complex axiomisation. For example in the case of the List ODP the reasoning
toll is high, whereas in the case of the Value Partition ODP it is not. If such
demanding ODPs are repeated in different parts of the ontology or they have a
lot of entities (e.g. a long list), the automated reasoning performance can consid-
erably decrease. Even though, strictly speaking, the axiomisation of an ontology
always affects automated reasoning performance, there are situations in which
there is no significant difference between one ontology and another. For ex-
ample, in an ontology with no defined classes or disjoints and only existential
restrictions with simple fillers (like the public OWL version of GO), it is likely

CHAPTER 5. EVALUATION FRAMEWORK 120

that the addition of further classes (following the same structure) will not affect
automated reasoning in a way that can be perceived by the user. However, even
though the automated reasoning performance does not significantly decrease, it
could be that the modelling adds additional complexity (e.g. if many classes are
made subclasses of a given class), and hence the difference between modelling
toll and reasoning toll. Lowest reasoning toll = 5.

Inconsistency risk: What is the probability of creating an inconsistency in the on-
tology by using the ODP? For example ODPs with richer axiomisation or a lot
of disjoints are more likely to be misused and create an inconsistency. Lowest
inconsistency risk = 5.

Tolerance to bad practice: There are ODPs that are more robust against bad modifi-
cation or bad use. For example the Nary Relationship ODP is more robust than
the Exception ODP, as adding a new relationship to a Nary Relationship is less
dangerous than adding a new relationship to the application of the Exception
ODP. However, it should be noted that, from the engineering point of view, it
is preferable to have explicit incorrect axioms than implicit incorrect axioms,
e.g. in labels, as they highlight problems in the knowledge domain: it is prefer-
able to fail early with a lot of minor problems than to fail late with a few big
problems. Highest tolerance = 5.

Maintainability: How difficult is it to maintain the model resulting from the appli-
cation of the ODP? In general, the more complex the axiomisation, the more
difficult the maintenance of the ODP in the ontology. However, as mentioned in
Chapter 4, by applying ODPs with OPPL their maintenance is less laborious and
more simple than it is manually, as it is not necessary to cancel modelling steps
(simply comment out OPPL statements regardless of their position in the OPPL
script). Highest maintainability = 5.

Community commitment: Different developers usually have different ideas about
how to conceptually model the same portion of the knowledge domain. There-
fore they must all reach a consensus, and a commitment to that consensus, re-
garding the structure of the ontology. However, there are ODPs that affect the
ontology more deeply than others, therefore needing a bigger consensus. Other
ODPs affect the ontology more “lightly”, hence not being important if the con-
sensus is not complete. For example the Upper Level Ontology ODP needs

CHAPTER 5. EVALUATION FRAMEWORK 121

a total commitment from the community, as it deeply affects the whole mod-
elling, whereas the Value Partition ODP does not: an Upper Level Ontology is
much more controversial than a Value Partition, and hence a Value Partition ODP
can be applied with a smaller consensus compared to an Upper Level Ontology
ODP. This criterion is related to the modelling toll, but they are not the same:
the community commitment expresses the conceptual or philosophical agree-
ment needed, whereas modelling toll refers to pure axiomatic costs. In some
cases, e.g. the Upper Level Ontology ODP, both criteria will measure the same
commitment. Lowest community commitment necessary = 5.

5.3 Ontology engineering

Focused development: ODPs, to be beneficial, should allow the ontologists to focus
on the hard and important problems of the modelling process. Therefore ODPs
should be able to be used to “mass produce” large portions of the target ontology,
saving time. Most focused development = 5.

Fast development: ODPs should make it possible for the modeller to reach an opti-
mum model in the expressivity space faster than without using ODPs, as ODPs
save time that does not need to be invested in deciding how to build that optimum
model. Fastest development = 5.

Prototyping: ODPs should enable a prototype ontology to be quickly built as a col-
lection of ODPs. A prototype ontology can be used for testing different queries,
or for highlighting potential maintenance issues. Quickest prototyping = 5.

Reengineering: ODPs should allow the modelling to be reused in different develop-
ment stages. For example, the Value Partition ODP can be recycled for different
values. Maximum reuse = 5.

Documentation of the process: By using ODPs the modelling decisions become ex-
plicit and traceable, as ODPs represent concrete models on the expressivity space
with a unique name, and are codified in application units (OPPL scripts). Some
ODPs abstract more complex modelling than other ODPs, and therefore they
offer a more informative documentation of the modelling process. Also, the
process should be further documented using OPPL comments (e.g. the observed
consequences of using an ODP). Most informative documentation = 5.

CHAPTER 5. EVALUATION FRAMEWORK 122

Communication between developers: ODPs should help in creating a more fluid
communication between developers, as they offer concrete models to discuss
different modelling decisions [30]. They should also make understanding of
an ontology a faster process, as the observer can recognise the different ODPs.
There are ODPs that synthesise more complex modelling in easier to communi-
cate notions, being more informative. Most informative communication = 5.

Predictability of consequences: By using ODPs the consequences of applying a con-
crete modelling should be clear, as ODPs have been previously tested and such
consequences documented. Most predictable consequences = 5.

Debugging: By using ODPs it should be clearer what the errors of the ontology are,
and how they can be traced, therefore making debugging an ontology a more
efficient process. This is due to the fact that ODPs are concrete and documented
fragments of modelling that are more predictable than modelling “on the wild”.
ODPs have well known properties, and therefore it is more likely to deduce what
fragment of the ontology is the culprit. Most efficient debugging = 5.

Principled modelling: ODPs should constrain the ways in which axioms can be added
to the ontology, resulting in more meaningful modelling. For example, when us-
ing the Sequence ODP it is clear where and how a new item should be added to
the sequence, and therefore modelling is not done “on the wild”. This practice
should result in more maintainable ontologies and ontologies where collabora-
tive work is more efficient. Most principled modelling = 5.

5.4 Ontology quality (ISO 9126 standard)

Structural: This is the only category that it is not included in the ISO 9126 standard.
However, in ontology quality it is important to consider the structure of the arte-
fact, as the structure considerably affects the rest of the criteria, especially the
functionality.

Formalisation: A formal model with precise semantics allows for a precise
interpretation of the statements made in the ontology. Therefore auto-
mated reasoning can be applied, and automated reasoning can be exploited,
e.g. for expressive querying. Most formal = 5.

CHAPTER 5. EVALUATION FRAMEWORK 123

Rigorous relations: Rigorous relations have a clear ontological definition that
can be codified using a formalism. The use of rigorous relations like RO
improves the quality of ontologies, as the integration of such ontologies
with other ontologies is made more efficiently, and more properties can be
used for querying via automated reasoning. Highest number of rigorous
relations = 5.

Cohesion: A strong cohesion (high connectivity between classes) is usually a
sign of a high quality ontology, as, e.g. it indicates a rich axiomisation that
can be exploited for automated reasoning. Highest connectivity = 5.

Tangledness: Asserted tangledness in an ontology is due to multiple inheri-
tance, which is difficult to maintain [73]. Least tangled = 5.

Redundancy: A redundant ontology will have a high number of non-informative
entities, i.e. entities that could be codified with fewer axioms, and therefore
improve the maintenance of the ontology. Least number of redundant enti-
ties = 5.

Structural accuracy: Structural accuracy assesses the correctness of the terms
used in the ontology, and it can be evaluated by looking for the terms in
resources such as WordNet2.

Domain coverage: If an ontology completely covers the defined domain, it can
be used for many tasks within the domain. Therefore, highest coverage =
5.

Functionality: This category analyses how the ontology performs its intended roles.

Competence adequacy: Is the ontology appropriate for its intended use? The
appropriateness is measured according to the different uses to which a bio-
ontology can be put, as described in [109] and mentioned in Chapter 2.
The uses are: reference ontology, controlled vocabulary, schema and value
reconciliation, consistent search and query, knowledge acquisition, cluster-
ing and similarity, indexing and linking, results representation, classifying
instances, text analysis, guidance and decision trees, knowledge reuse, in-
ferencing. The last two, knowledge reuse and inferencing, were added and
are not present in the list from [109]. Most appropriate ontology for each
use = 5.

2http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

CHAPTER 5. EVALUATION FRAMEWORK 124

Interoperability: Interoperability measures to which extent the knowledge mod-
elled in the ontology can be combined with that present in other ontologies
to solve a concrete task. Most interoperable = 5.

Reliability: This category analyses the capability of an ontology to maintain its level
of performance.

Maturity:

Technological: Technological maturity refers to the technologies available
for editing and exploiting an ontology, like OBO or OWL. Most tech-
nologically mature = 5.

Knowledge: The frequency of modifications indicates the maturity of the
knowledge represented in an (actively maintained) ontology: the less
frequent the changes, the more mature the ontology. Most mature
knowledge = 5.

Robustness: The robustness of an ontology assesses how the ontology is af-
fected in the case that incorrect knowledge is identified within the ontology
(it does not refer to knowledge not captured by the ontology). Most robust
= 5.

Authority: The authority of an ontology comes from the authority of its cura-
tors, which can be measured with traditional measures like publications of
the authors, H index3, etc. Biggest authority = 5.

Usability: This category assesses the effort needed to use an ontology.

Readability: Readability is measured by the “human readable” part of the on-
tology, that is, the quantity and quality of annotation values. For example,
the annotation values of rdfs:label, rdfs:comment, Dublin core anno-
tation properties, and custom annotation properties of the ontology like
obsolete. Greatest readability = 5.

Reusability: Capability of the ontology, or parts of the ontology, to be reused
in other ontologies, e.g. via importing. A low reusability can be due to the
modelling itself (e.g. an ontology that is not modular or does not make

3The H index is a measurement of the impact of the work performed by a scientist (http://en.
wikipedia.org/wiki/Hirsch_number).

http://en.wikipedia.org/wiki/Hirsch_number
http://en.wikipedia.org/wiki/Hirsch_number

CHAPTER 5. EVALUATION FRAMEWORK 125

use of an Upper Level Ontology) or due to the underlying technology
(e.g. OBO does not allow for importing). Most reusable = 5.

Efficiency: This category analyses the relation between the level of performance of
the ontology and the amount of resources used, like time consumption, memory
consumption, etc. Most efficient = 5.

Maintainability: This category measures the effort needed to make specific modifi-
cations.

Stability: The stability of an ontology is measured by assessing how the intro-
duction of wrong axioms affects the ontology. Stability relates to errors
in the axiomisation, and robustness relates to errors at a conceptual level.
Most stable = 5.

Changeability: Effort needed for adding new axioms to the ontology. Highest
changeability = 5.

Analysability: This criterion measures the difficulty in diagnosing problems in
an ontology, in other words, how efficiently can the ontology be debugged.
Highest analysability = 5.

Testability: Effort needed to validate the ontology, e.g. by automated reasoning,
and how meaningful is such validation. Highest testability = 5.

Quality in use This category analyses the final product, when used in real conditions.

Effectiveness: Ability of the ontology to fulfil concrete user needs. Highest
effectiveness = 5.

User satisfaction:

Popularity: The satisfaction of the users of the ontology. Highest popu-
larity = 5.

Engagement: The degree to which users and projects make an intensive
use of the ontology. Highest engagement = 5.

5.5 Conclusions

The contribution of this chapter is an evaluation framework for assessing ODPs and
their impact on ontology development, divided into three areas: ODP quality, ontology

CHAPTER 5. EVALUATION FRAMEWORK 126

engineering, and ontology quality. The framework can be used to assign quality values
to ODPs and ontologies modified by ODPs, generating radar graphs that provide an in-
tuitive idea of relative ODP and ontology quality. Therefore, the chapter has answered
the following research questions:

How can we assess ODP quality? The following criteria have been defined to evalu-
ate ODP quality: modelling probability, modelling benefit, use efficiency, speci-
ficity, documentation clarity, modelling toll, reasoning toll, inconsistency risk,
tolerance to bad practice, maintainability, and community commitment.

How can we assess the impact of ODPs in bio-ontology engineering? The following
criteria have been defined to evaluate how different ODPs affect ontology en-
gineering: focused development, fast development, prototyping, reengineering,
documentation of the process, communication between developers, predictabil-
ity of consequences, debugging, and principled modelling.

How can we assess the change of quality of bio-ontologies as a result of applying

ODPs? An adapted version of the ISO 9126 standard for software quality as-
sessment has been defined to evaluate ontology quality.

Chapter 6

Evaluation results

This chapter describes the use cases for the application of ODPs in bio-ontologies, and
the evaluation of the results, using the evaluation framework described in Chapter 5.
Therefore, this chapter provides answers to the research questions How can we assess

ODP quality?, How can we assess the impact of ODPs in bio-ontology engineering?,
and How does the use of ODPs change the quality of concrete bio-ontologies?

The chapter is organised as follows. Section 6.1 describes the concrete use cases
(Upper Level Ontology ODP in CCO, Sequence ODP in CCO, Entity-Quality ODP in
GO, Selector ODP in GO, Normalisation ODP in CL) and the process of applying such
ODPs in the concrete bio-ontologies. Section 6.2 analyses the results of evaluating
the ODPs (ODP quality and ontology engineering) and their application (ontology
quality).

6.1 Execution of use cases

The execution of the evaluation consisted of applying some ODPs in bio-ontologies
and evaluating the process and the result using the framework described in Chapter 5.
The following ODPs were selected from the online catalogue and applied in concrete
bio-ontologies: the Upper Level Ontology ODP in CCO, the Sequence ODP in CCO,
the Entity-Quality ODP in GO, the Selector ODP in GO, and the Normalisation ODP
in CL.

GO and CL were selected for applying ODPs due to the fact that they are widely
used bio-ontologies, especially GO [11]. CCO was selected because the author was
involved in its development. The Upper Level Ontology ODP, the Sequence ODP,

127

CHAPTER 6. EVALUATION RESULTS 128

and the Normalisation ODP were selected because they fulfilled specific modelling re-
quirements of CCO and CL. The Entity-Quality ODP was selected due to the fact that
it is closely related to the Entity-Property-Quality ODP and the Entity-Feature-Value
ODP, therefore making it an informative case for the ODP quality evaluation, as such
evaluation is relative to other the ODPs. The Selector ODP was selected because it
allowed to exploit the fact that GO biological regulation term names are syntac-
tically structured, therefore making it possible to exploit OPPL’s annotation processing
capabilities.

The five ODPs were evaluated on ODP quality and ontology engineering, but only
the Normalisation ODP was thoroughly evaluated on ontology quality. In the case of
the other ODPs, only the most important issues are commented on this thesis with
respect to ontology quality.

In the ontology quality area only one ODP was evaluated because, in order to
perform a realistic evaluation, a real bio-ontology with real curators is needed, and
performing such analysis on every ODP is beyond the scale of this work. This is
mainly because it is unlikely to find bio-ontology curators ready to engage in a new
ontology engineering method like the usage of ODPs in OWL. Also, such curators
should be chosen from different bio-ontologies, as not all the ODPs can be applied in
all bio-ontologies, making the experimental setting more difficult.

Given the resource limitations, the Normalisation ODP was chosen because it
deeply changes the structure of the target ontology, whereas other ODPs make more
superficial changes, and therefore it has a higher impact. Another justification for
choosing the Normalisation ODP is its ready application in a collaborative setting,
which allows assessment of the reaction of other curators, something less tangible with
other ODPs. The Normalisation ODP allows collaborative work because it separates
the structure of the target ontology into two main parts: a subsumption hierarchy and a
collection of defined classes that will be used for automatic reasoning. The classes of
the subsumption hierarchy can be divided between different curators in order for each
curator to add axioms to those classes, and hence the different curators can efficiently
collaborate.

There are two main scenarios where ODPs’ application can be analysed: build-
ing bio-ontologies from scratch or applying ODPs to improve already existing bio-
ontologies. We chose the second scenario, as assessing the process of bio-ontology
building from scratch would need to capture many more variables. For example, the
complexity of the domain of knowledge, the knowledge of the curators about such

CHAPTER 6. EVALUATION RESULTS 129

domain, and the OWL expertise of the curators should be taken into account, which
is complex and not completely representative. Even if such variables were somehow
taken into account, providing a collection of ODPs and some modelling problems, and
expecting some modellers to choose the correct ODP in an experimental setting has
been already shown not to yield conclusive results [25].

Finally, and most importantly, another justification for an ontology to ontology
comparison is that already existing bio-ontologies reflect the tension between best
practice and real practice more realistically than ontologies created from scratch in
an experimental setting. In other words, sometimes bio-ontology developers have pre-
cise priorities and real implementation needs (e.g. updated annotations for database
integration) that can clash with the use of ODPs, and that should be taken into account.

The following sections describe the details of the application of each ODP in each
of the bio-ontologies. Section 6.2 analyses the results of evaluating that application.

6.1.1 Application of the Upper Level Ontology ODP in CCO

CCO integrates data from scattered resources and exploits implicit links between those
resources to create a comprehensive representation of the cell cycle. CCO aims at
providing a single resource to be queried by scientists interested in the cell cycle.

The information related to the cell cycle of the following resources is integrated in
CCO: GO, UniProt, IntAct, GOA, and NCBI taxonomy1. CCO is created as a result
of filtering and linking such information in an automatic Perl pipeline. The pipeline
starts from the GO cell cycle subtree, and adds the pertinent UniProt entries using
the GOA files as a filter. The added UniProt entries are used to retrieve the pertinent
molecular interaction entries from IntAct, and any extra GO fragment (e.g. cellular
components). CCO contains information about four model organisms, H. sapiens, S.

cerevisiae, S. pombe, and A. thaliana, and the pertinent NCBI taxonomy subtree is
added to each of them.

The Upper Level Ontology ODP2 was applied in CCO to make the modelling pro-
cess more principled and accommodate the other resources within CCO, as mentioned
in [10]. A simple Upper Level Ontology was created for CCO, in order to avoid ex-
cessive commitment to a concrete view of the domain (e.g. as in BFO) but still ensure
the possibility of adding new subontologies. A simple Upper Level Ontology can be

1http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
2http://www.gong.manchester.ac.uk/odp/html/Upper_Level_Ontology.html

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
http://www.gong.manchester.ac.uk/odp/html/Upper_Level_Ontology.html

CHAPTER 6. EVALUATION RESULTS 130

extended with more fine grained content, but a rich Upper Level Ontology is more dif-
ficult to trim down, and therefore a lean Upper Level Ontology was chosen for CCO
as it was a project in its early development stages. OPPL was not used to apply this
ODP, differing from the other use cases, as CCO was produced by a Perl pipeline; the
concrete Upper Level Ontology used was created manually and the rest of the ontology
parts were attached to it in the pipeline.

6.1.2 Application of the Sequence ODP in CCO

The terms that describe the phases of the cell cycle in CCO (the subtree under cell
cycle phase) come from GO. As GO only presents the properties is a, part of,
regulates, positively regulates and negatively regulates, the sequentiality
of those phases cannot be represented. Thus, the fact that, assuming that the cell cycle
starts in the G1 phase, G1 is followed by S, G2 and M, in that order, cannot be repre-
sented in GO. The same applies for other subphases of the cell cycle, like the phases
of mitosis.

The Sequence ODP3 was applied in CCO to add such a sequential aspect to the
cell cycle phases [10]. The OPPL script used can be seen in Figure 4.6. By adding
sequentiality to the phases, queries regarding the timing of the phases could be made,
e.g. Does this protein participate in a process that happens at S and any other phase

after that?

The Sequence ODP presents a structure where the phases are related using the RO
transitive property preceded by4. A further property, immediately preceded by, is
added as a functional subproperty of preceded by, to query phases that happen before
or after a given phase, without querying the rest of the phases (this feature is useful
when the user is not aware of all the phases of a process, e.g. the phases of meiosis).
As mentioned, the assumption behind the application of the Sequence ODP in CCO
is to reduce a cycle, in which phases cannot be really regarded as happening before
or after other phases (in a cycle everything happens before or after everything), to a
sequence of events starting in G1.

3http://www.gong.manchester.ac.uk/odp/html/Sequence.html
4http://www.obofoundry.org/ro/#OBO_REL:preceded_by

http://www.gong.manchester.ac.uk/odp/html/Sequence.html
http://www.obofoundry.org/ro/#OBO_REL:preceded_by

CHAPTER 6. EVALUATION RESULTS 131

6.1.3 Application of the Entity-Quality ODP in GO

The Entity-Quality ODP5, together with the Entity-Property-Quality ODP6 and the
Entity-Feature-Value ODP7, form a group of three alternatives for modelling modifiers
and values [30]. Modifiers are dependent entities that refine an aspect of an inde-
pendent entity, e.g. a car (independent entity) is refined by being white (white is a
dependent entity). A modifier can take different values.

The three ODPs perform the following functions in different ways: representing
which modifiers are applicable to which independent entities, representing whether
an entity can have one or more modifiers, representing which values pertain to each
modifier, and representing the constraints between the values. Therefore each ODP
will fit different modelling requirements.

The Entity-Quality ODP consists of a single generic property that links modifiers
to independent entities –(inv) has quality–. The advantage of the Entity-Quality
ODP is its simplicity, due to the fact that only one property is needed. However,
a further axiom is needed to express the fact that a given entity presents a qual-
ity or not. A QCR is used for that ask, e.g. cell part subClassOf has quality

max 1 position if the quality is optional, or cell part subClassOf has quality

exactly 1 position if the quality is intrinsic to the entity.
The Entity-Property-Quality ODP represents each quality using an object property,

which results in a proliferation of object properties, but offers the possibility of restrict-
ing which modifiers apply to which entities by simply using domain and range axioms.
The Entity-Feature-Value ODP is the only one that allows the modelling of modifiers
with multiple aspects (e.g. colour with a certain saturation and brightness), but it is the
most complex one.

The Entity-Quality ODP was applied in GO with the OPPL script shown in Figure
4.16 [30], as a demonstration of how to use OPPL to apply ODPs.

6.1.4 Application of the Selector ODP in GO

As mentioned in chapter 2, the Selector ODP8 is used to model entities through selec-
tors like right and left. Using the this ODP, we avoid having entities like right hand

or left hand, instead modelling an entity hand and then adding the selectors right or

5http://www.gong.manchester.ac.uk/odp/html/Entity_Quality.html
6http://www.gong.manchester.ac.uk/odp/html/Entity_Property_Quality.html
7http://www.gong.manchester.ac.uk/odp/html/Entity_Feature_Value.html
8http://www.gong.manchester.ac.uk/odp/html/Selector.html

http://www.gong.manchester.ac.uk/odp/html/Entity_Quality.html
http://www.gong.manchester.ac.uk/odp/html/Entity_Property_Quality.html
http://www.gong.manchester.ac.uk/odp/html/Entity_Feature_Value.html
http://www.gong.manchester.ac.uk/odp/html/Selector.html

CHAPTER 6. EVALUATION RESULTS 132

Class: negative regulation of cytokine production
equivalentTo:

biological regulation,
is_regulation_type some negative,
regulates some cytokine production

Figure 6.1: Redefinition of the GO term negative regulation of cytokine
production using the Selector ODP. After the redefinition, the term negative
regulation of cytokine production is equivalent to any biological regulation of
type negative that regulates cytokine production.

left as appropriate. For example, to refer to a finger of the right hand, the following
expression would be used, without having to mention right hand: part of only

hand and has laterality some right. Using this ODP the number of classes
needed in the ontology decreases, and querying possibilities increase.

The Selector ODP can be used to model the regulation processes in GO. In GO,
regulation is always positive or negative, and the properties positively regulates

and negatively regulates are used to relate processes that regulate other processes,
e.g. negative regulation of cytokine production is linked through the prop-
erty negatively regulates to cytokine production. Therefore, regulation can
be defined by modelling positive and negative as selectors, like right and left in the
hand example. Using such pattern, the class negative regulation of cytokine

production is redefined as shown in Figure 6.1.
The Selector ODP was applied in GO (02:12:2008 11:31 version, CVS revision

5.896) using the OPPL script shown in Figure 6.2. Before applying the Selector ODP,
the GO terms starting with negative regulation of, positive regulation of

or regulation of were detached from the subsumption hierarchy, in order to test
whether such a hierarchy could be recreated using inference after applying the ODP
(the part of relationships were maintained). ONTO-PERL was used for this task.
When applying the ODP with OPPL, the GO properties positively regulates and
negatively regulates were also removed.

For another example of the application of the Selector ODP, see the application in
the Foundational Model of Anatomy (FMA) [91] described in [74].

CHAPTER 6. EVALUATION RESULTS 133

ADD Class: Regulation;ADD label "regulation";

ADD Class: PositiveRegulation;ADD subClassOf Regulation;REMOVE subClassOf Thing;
ADD label "positive regulation";

ADD Class: NegativeRegulation;ADD subClassOf Regulation;REMOVE subClassOf Thing;
ADD label "negative regulation";

SELECT Class: PositiveRegulation;ADD disjointWith NegativeRegulation;

SELECT Class: Regulation;ADD equivalentTo PositiveRegulation or
NegativeRegulation;

ADD ObjectProperty: is_regulation_type;ADD functional;

REMOVE ObjectProperty: negatively_regulates;

REMOVE ObjectProperty: positively_regulates;

Since we have removed negatively_regulates and positively_regulates, there is
no axiom including regulates so we add it

ADD ObjectProperty: regulates;

SELECT label "(ˆnegative regulation|positive regulation|regulation) of (.+$)";
ADD equivalentTo GO_0065007 and (is_regulation_type some <1>) and
(regulates some <2>);

Figure 6.2: OPPL script for applying the Selector ODP in GO. This is a re-
duced version of the actual script, for the sake of clarity. The first half of
the script adds the selectors, positive regulation and negative regulation.
The second half adds the actual Selector ODP: the property is regulation type
is added, the GO properties positively regulates and negatively regulates
are removed, and the annotation values are queried to redefine each class
that matches the defined regular expressions((ˆnegative regulation|positive
regulation|regulation) of (.+$)). Each class that matches the regular expres-
sion with its label annotation value will be redefined as equivalentTo GO 0065007
and (is regulation type some <1>) and (regulates some <2>), being <1>
and <2> the matched groups 1 and 2.

CHAPTER 6. EVALUATION RESULTS 134

Figure 6.3: A non-normalised ontology. All the subsumption relationships are manu-
ally asserted.

6.1.5 Application of the Normalisation ODP in CL

The Normalisation ODP9 is used for creating and maintaining ontologies that are struc-
tured with multiple inheritance, that is, most of the classes have more than one super-
class, forming a “polyhierarchy”. The Normalisation ODP consists of building an
ontology in a way that the reasoner is the one that maintains the polyhierarchy, instead
of relying on curators manually maintaining it. In order to obtain such a structure, the
ontology is divided in two parts: the primitive axis and the modules. The primitive
axis is formed by classes with only one superclass, sibling-wise disjoint and primi-
tive (classes with only necessary conditions). The modules are defined classes (classes
with necessary and sufficient conditions) that are not disjoint, and are used by the rea-
soner to obtain the polyhierarchy: each of the modules has a restriction as a necessary
and sufficient condition. Usually the classes from the primitive axis form the bulk of
the ontology and they have more than one restriction that it is the same as any of the
restrictions of the modules; therefore, the reasoner will infer that the different modules
are superclasses of different primitive classes, resulting in each of the primitive classes
having more than one module as a superclass. The multiple inheritance structure is
obtained by running the reasoner. An example of how Normalisation works, inspired
by a use case from OBI, can be seen in Figures 6.3, 6.4 and 6.5. A non-normalised
ontology can be seen in Figure 6.3; a normalised ontology before and after automated
reasoning can be seen in Figures 6.4 and 6.5, respectively.

CL10 is a bio-ontology that describes canonical cell types that has been used in

9http://www.gong.manchester.ac.uk/odp/html/Normalisation.html
10http://www.obofoundry.org/cgi-bin/detail.cgi?id=cell

http://www.gong.manchester.ac.uk/odp/html/Normalisation.html
http://www.obofoundry.org/cgi-bin/detail.cgi?id=cell

CHAPTER 6. EVALUATION RESULTS 135

Figure 6.4: A normalised ontology before automated reasoning. The modules are the
dark circles, and the primitive axis is formed by the classes under actual trial.

Figure 6.5: A normalised ontology after automated reasoning. Most of the subsump-
tion relationships are inferred by the reasoner: each primitive class is a subclass of
more than one defined class (module) inferred - and one primitive class (asserted).

projects like XSPAN11. The structure of CL is ideal for normalisation, since it con-
sists of a classification of each cell type according to different criteria, resulting in as-
serted multiple inheritance (Figure 6.6). For example, a cell can be an eukaryotic cell
(classification according to organism), a multinucleate cell (classification according to
number of nuclei), a diploid cell (classification according to ploidy) and a defensive
cell (classification according to function), and it will therefore have four superclasses.
This results in a polyhierarchy, as each cell has more than one cell type superclass,
and those superclasses are shared by other cells (e.g. there are various cells that have
defensive cell as a superclass).

CL has two relationships: is-a and develops-from. The relationship is-a is
used for expressing a subsumption relationship (e.g. alveolar macrophage is a sub-
class of macrophage) and develops-from is used for expressing that a cell is derived
from another cell (e.g. chondrocyte is derived from chondroblast).

In order to apply the Normalisation ODP in CL, a two day meeting was organised
with different scientists, to try to collaboratively recreate the structure of the original
CL (herein called CL), in OBO format, in a normalised CL (herein called nCL), in
OWL.

11http://www.xspan.org/obo/index.html

http://www.xspan.org/obo/index.html

CHAPTER 6. EVALUATION RESULTS 136

Figure 6.6: Structure of CL. Circles with an “i” within are is-a relationships, and
diamonds with a “D” within develops-from relationships. The ontology is divided
into various axes (cell by function, cell by lineage, etc.) and each cell can
have more than one superclass on each of those axes (e.g. the same cell can be defensive
and mesodermal), creating a polyhierarchy.

CHAPTER 6. EVALUATION RESULTS 137

During the two days, a normalisation schema was agreed, based on a set of prop-
erties to describe cells: ploidy, morphology, cellular component, size, germ
line, nucleation, process, process comment, lineage, organism, organism

comment, potentiality, anatomy, cell surface protein, comments. The leaf
terms of the ontology were selected, thus cells with no child terms along is-a or
develops-from relationships, and divided in groups by following the CL classifi-
cation according to functions: absorptive cell, defensive cell, etc. Each of the
participants took responsibility for a group of cells and described them using the agreed
properties, filling a common excel file in google docs12. The Entity-Property-Quality
ODP was also applied, albeit not explicitly, to add the fillers of the properties of each
cell, as for each quality there was a property (e.g. diploid–ploidy)13.

Some of the fillers for the properties were terms from other ontologies, like GO or
Phenotypic Quality Ontology14 (PATO), that were imported in nCL. PATO was used
for the fillers of the following properties: ploidy, morphology, size, nucleation,
and potentiality. GO was used for obtaining the filler classes for the properties
cellular component and process. The original ontologies were downloaded in
OBO format and then converted to OWL using the OBO2OWL script from the GONG
project15. OPPL was used to remove the obsolete classes.

The general normalisation process mainly consisted of generating a whole new CL
in OWL, nCL, from scratch, with the contributions from the participants. The process
was not a single event, that is, the cells were sent in different groups and a new ontology
was automatically generated each time, and therefore each version of the ontology was
bigger than the prior version. The pipeline consisted of a collection of Perl and OPPL
scripts, divided in the following steps:

1. The main ontology is created (nCL) and GO, RO and PATO are imported, with-
out obsoletes.

2. A scaffold is created by executing the OPPL script shown in Figures 6.7 and 6.8.
The scaffold consists of the classes Cell (for concrete cells) and CellType (for

12http://docs.google.com/
13The same phenomenom takes place with the Selector ODP and the Value Partition ODP, as the

selector values are usually represented in a value partition. Therefore, the structure is similar, but they
are conceptually different ODPs: the emphasis in the Selector ODP lies in the fact that selector values
and properties can be used to reduce the number of classes of an ontology, and the emphasis on the
Value Partition ODP lies on representing the selector values (or any other partition of values).

14http://www.obofoundry.org/cgi-bin/detail.cgi?id=quality
15http://www.gong.manchester.ac.uk/bin/OBO2OWL.tar.gz

http://docs.google.com/
http://www.obofoundry.org/cgi-bin/detail.cgi?id=quality
http://www.gong.manchester.ac.uk/bin/OBO2OWL.tar.gz

CHAPTER 6. EVALUATION RESULTS 138

defined modules), a few customized object properties (e.g. has ploidy), object
properties from RO, and defined modules under CellType (e.g. HaploidCell).
The class TerminallyDifferentiated, non-existent in PATO, is also added to
it.

3. Organisms (“buried” in term names with the keyword “sensu”, e.g. receptor

cell (sensu Animalia)) are extracted from CL using ONTO-PERL and added
under Organism (Figure 6.9). Extra organisms, not present in nCL, are added
by demand of the participants.

4. The google docs spreadsheet is transformed into an OPPL file (Table 6.1 and
Figure 6.10). Any information added by the participant but not appropriate for
adding to the ontology (e.g. non-existent terms) is captured in annotations, to
retain all the information.

5. Intermediate levels (cells that are not “leaf terms” on CL) are selected with
ONTO-PERL, and added to nCL. Another google docs spreadsheet is used for
adding arbitrary axioms to such intermediate cells. This spreadsheet has two
extra columns, for adding arbitrary MOS expressions as necessary and sufficient
or necessary conditions, to try to recreate the structure of the intermediate cells
via automated reasoning. The original CL can also be improved by the curators,
not necessarily following original CL structure.

6. The develops-from relationship from CL is substituted by the RO relationship
derives from in nCL. This is done by automatically traversing CL with ONTO-
PERL and adding all the corresponding derives from restrictions to nCL, in
order to recreate the original structure. Three classes are added for representing
lineages: cells that derive from the endoderm (EndodermalLineageCell), cells
that derive from the mesoderm (MesodermalLineageCell), and cells that derive
from the ectoderm (EctodermalLineageCell) (Figure 6.11).

7. All the leaf cells are made disjoint and some new combined modules are created
(Figure 6.12). A combined module is a defined class that combines different
object properties: e.g. MultinucleateCellParticipatesInImmuneResponse

is defined as any cell that is multinucleate and participates in immune response.

Once the final OWL ontology (nCL) is generated, automated reasoning is applied
to check consistency, to obtain query results, and, most importantly, to check whether

CHAPTER 6. EVALUATION RESULTS 139

General structure and properties

ADD Class: Cell;
ADD Class: CellType;
ADD ObjectProperty: has_ploidy;ADD functional;ADD domain cto:Cell or
cto:CellType;ADD range pato:PATO_0001374;
ADD ObjectProperty: has_morphology;ADD functional;ADD domain cto:Cell
or cto:CellType;ADD range pato:PATO_0000001;
ADD ObjectProperty: has_nucleation;ADD functional;ADD domain cto:Cell
or cto:CellType;ADD range pato:PATO_0001404;
ADD Class: Size;
ADD Class: Small;REMOVE subClassOf owl:Thing;ADD subClassOf cto:Size;
ADD Class: Large;REMOVE subClassOf owl:Thing;ADD subClassOf cto:Size;
ADD Class: Medium;REMOVE subClassOf owl:Thing;ADD subClassOf cto:Size;
SELECT assertedSubClassOf cto:Size;ADD disjointWithSiblings;
SELECT Class: Size;ADD equivalentTo cto:Small or cto:Large or cto:Medium;
REMOVE ObjectProperty: ro:is_a;
SELECT ObjectProperty: ro:participates_in;ADD domain cto:Cell or
cto:CellType;ADD range go:GO_0008150;
SELECT ObjectProperty: ro:derives_from;ADD domain cto:Cell or cto:CellType;
ADD range cto:Cell or cto:CellType;ADD transitive;
SELECT ObjectProperty: ro:located_in;ADD domain cto:Cell or cto:CellType;
ADD ObjectProperty: has_size;ADD functional;ADD domain cto:Cell or
cto:CellType;ADD range cto:Size;
ADD ObjectProperty: potentiality;ADD domain cto:Cell or cto:CellType;
ADD Class: TerminallyDifferentiated;REMOVE subClassOf owl:Thing;
ADD subClassOf pato:PATO_0001397;

Figure 6.7: OPPL script for creating the scaffold structure of nCL. Manually created
script. The classes Cell and CellType are artefacts for holding the disjoint leaf cells
(under Cell) and the intermediate cells (under CellType).

the modules have multiple subclasses and hence the original polyhierarchy is recreated.
However, the recreation of the CL hierarchy is attempted in the CL fragments that are
correct: improvements were introduced by the curators in other fragments. Therefore,
nCL is not a completely equivalent recreation, via Normalisation, of CL.

This process was repeated every time a contribution from any participant was added
to the google spreadsheet. The programming effort needed for automating the pro-
cess was due to the fact that contributions of many participants and original content
(e.g. derives from completeness from CL) needed to be synchronised in order to pro-
duce nCL. The participants had different levels of expertise ranging from bio-ontology
to pure cell biology, but only one of the participants had a computer science back-
ground. Therefore, the most useful skill was biological knowledge, in order to properly
describe the cells.

CHAPTER 6. EVALUATION RESULTS 140

Modules (defined classes): we define modules for each of the properties,
and some combinations as well to provide examples
Some properties not defined as modules as no one added a filler for
them: inv (part_of), GERM LINE

ADD Class: SphericalCell;REMOVE subClassOf owl:Thing;ADD subClassOf
cto:CellType;ADD equivalentTo cto:has_morphology some pato:PATO_0001499;
ADD Class: HaploidCell;REMOVE subClassOf owl:Thing;ADD subClassOf
cto:CellType;ADD equivalentTo cto:has_ploidy some pato:PATO_0001375;
ADD Class: DiploidCell;REMOVE subClassOf owl:Thing;ADD subClassOf
cto:CellType;ADD equivalentTo cto:has_ploidy some pato:PATO_0001394;
ADD Class: SmallCell;REMOVE subClassOf owl:Thing;ADD subClassOf cto:CellType;
ADD equivalentTo cto:has_size some cto:Small;
ADD Class: LargeCell;REMOVE subClassOf owl:Thing;ADD subClassOf cto:CellType;
ADD equivalentTo cto:has_size some cto:Large;
ADD Class: MediumCell;REMOVE subClassOf owl:Thing;ADD subClassOf cto:CellType;
ADD equivalentTo cto:has_size some cto:Medium;
ADD Class: MononucleateCell;REMOVE subClassOf owl:Thing;ADD subClassOf
cto:CellType;ADD equivalentTo cto:has_nucleation some pato:PATO_0001407;
ADD Class: AnucleateCell;REMOVE subClassOf owl:Thing;ADD subClassOf
cto:CellType;
ADD equivalentTo cto:has_nucleation some pato:PATO_0001405;

There is no cell with a potentiality different from terminally
differentiated: poor

ADD Class: TerminallyDifferentiatedCell;REMOVE subClassOf owl:Thing;
ADD subClassOf cto:CellType;ADD equivalentTo cto:potentiality some
cto:TerminallyDifferentiated;

Anatomy and cell surface protein are left

Queries
ADD Class: Query_1;ADD equivalentTo ro:participates_in some go:GO_0032940 and
ro:participates_in some go:GO_0007589;
ADD Class: Query_2;ADD equivalentTo ro:participates_in some go:GO_0065008;
ADD comment
"Transitivity of is_a allows us to exploit GO’s structure for queries";

Figure 6.8: OPPL script. Continued from Figure 6.7.

CHAPTER 6. EVALUATION RESULTS 141

ADD Class: Organism;
ADD Class: Nematoda_and_Protostomia;ADD subClassOf cto:Organism;
REMOVE subClassOf owl:Thing;
ADD Class: Arthopoda;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Vertebrata;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Mus;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Endoptyeygota;ADD subClassOf cto:Organism;
REMOVE subClassOf owl:Thing;
ADD Class: Mycetozoa;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Arthropoda;ADD subClassOf cto:Organism;
REMOVE subClassOf owl:Thing;
ADD Class: Diptera;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Nematoda;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Fungi;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Insecta;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Animalia;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Viridiplantae;ADD subClassOf cto:Organism;
REMOVE subClassOf owl:Thing;
ADD Class: Actinopterygii_and_Amphibia;ADD subClassOf
cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Mammalia;ADD subClassOf cto:Organism;REMOVE subClassOf owl:Thing;
ADD Class: Protostomia;ADD subClassOf cto:Organism;
REMOVE subClassOf owl:Thing;
ADD Class: Aves;ADD subClassOf cto:Protostomia;REMOVE subClassOf owl:Thing;

Figure 6.9: OPPL script for adding the necessary organisms to nCL. The script is
automatically generated using ONTO-PERL.

ADD Class: CL_0000811;REMOVE subClassOf owl:Thing;
ADD label ‘‘CD8-positive, alpha-beta immature T cell’’;
ADD subClassOf cto:Cell;ADD subClassOf cto:has_ploidy some pato:PATO_0001394;
ADD comment ‘‘MORPHOLOGY: pleiomorphic’’;
ADD comment ‘‘CELULAR COMPONENT: ’’;
ADD subClassOf cto:has_size some cto:Small;
ADD comment ‘‘GERM LINE: n/a’’;
ADD subClassOf cto:has_nucleation some pato:PATO_0001407;
ADD subClassOf cto:participates_in some go:GO_2456;
ADD subClassOf cto:participates_in some go:GO_0021700;
ADD subClassOf cto:participates_in some go:GO_0032940;
ADD comment ‘‘PROCESS: ’’;
ADD comment ‘‘LINEAGE: mesoderm’’;
ADD subClassOf cto:appears_in some cto:Animalia;
ADD comment ‘‘ORGANISM COMMENT: ’’;
ADD subClassOf cto:potentiality some cto:TerminallyDifferentiated;

Figure 6.10: OPPL script for adding one of the contributions from one of the partici-
pants, thus, one leaf cell. The same participant contributed with around 40 cells. The
script is generated automatically by parsing the google docs spreadsheet, in tabular
format, with a custom Perl script. The values that are empty or are invalid are added
as annotation values to keep track of all the errors.

CHAPTER 6. EVALUATION RESULTS 142

Term Name CL id ploidy morphology Cellular size
component

CD8-positive, CL:0000811 PATO:0001394 pleiomorphic n/a small
alpha-beta
immature T cell

germ line nucleation process process comment lineage organism
mesoderm PATO:0001407 GO:0002456 n/a mesoderm Animalia

GO:0021700
GO:0032940

Organism Comment potentiality anatomy Cell surface protein
n/a Terminally differentiated circulatory system CD marker CD-8

Table 6.1: Excerpt from the google docs spreadsheet. Attributes (first line, bold) and
their values for a concrete leaf cell (second line) are shown.

SELECT Class: cto:CL_0000189;ADD subClassOf ro:derives_from some cto:CL_0000857;
SELECT Class: cto:CL_0000854;ADD subClassOf ro:derives_from some cto:CL_0000032;
SELECT Class: cto:CL_0000098;ADD subClassOf ro:derives_from some cto:CL_0000710;
SELECT Class: cto:CL_0000214;ADD subClassOf ro:derives_from some cto:CL_0000134;

Figure 6.11: OPPL script for adding all the necessary derives from relations to nCL.
Automatically generated script.

Make all the cells (leaf nodes) disjoint

SELECT assertedSubClassOf cto:Cell;ADD disjointWithSiblings;

Combination of modules. This exploits reasoning as it uses
the GO hierarchy is_a for the functions (participates_in)
We create a module for each of the groups from Simon’s page

ADD Class: MultinucleateCellParticipatesInImmuneResponse;
REMOVE subClassOf owl:Thing;ADD subClassOf cto:CellType;
ADD equivalentTo cto:has_nucleation some pato:PATO_0001908 and
ro:participates_in some go:GO_0006955;
ADD Class: EctodermalCellParticipatesInImmuneResponse;
REMOVE subClassOf owl:Thing;ADD subClassOf cto:CellType;
ADD equivalentTo ro:derives_from some cto:CL_0000221 and ro:participates_in
some go:GO_0006955;

Develops from modules are defined later by DevelopsFrom.pl

ADD Class: MammalianCell;REMOVE subClassOf owl:Thing;
ADD subClassOf cto:CellType;ADD equivalentTo ro:located_in some cto:Mammalia;

Figure 6.12: OPPL script for adding some corrections to nCL. Manually created script.

CHAPTER 6. EVALUATION RESULTS 143

6.2 Results

6.2.1 Upper Level Ontology ODP in CCO

The ODP quality graph of the Upper Level Ontology ODP (Figure 6.13) reveals three
major problems and three major benefits. The problems are the following: need for a
high community commitment, low tolerance to bad practice and high risk of inconsis-
tency. The benefits, on the other hand, are the following: high modelling benefit, high
use efficiency and low specificity.

The need for a high community commitment is due to the fact that the Upper Level
Ontology chosen will determine the whole modelling of the ontology, as it provides
the basic distinctions of entities in the ontology. The distinctions can be basic, as in
the case of CCO (e.g. distinctions between processes and entities), or fine grained. The
community commitment is difficult to achieve (and hence the low score) because of the
controversy inherent in those distinctions, as illustrated by the discussions on the BFO
public mailing list16. The low tolerance to bad practice (low score) is due to the fact
that it is likely that a developer will add a new entity in the wrong branch of the ULO.
The high inconsistency risk is due to the fact that, as the different branches are disjoint
to each other, it is likely to produce an inconsistency by adding several superclasses,
from different branches, to a new class.

In terms of advantages, the high modelling benefit (high score) is due to the princi-
pled modelling that results from the usage of an ULO, as the different types of concepts
of the ontology are ordered in different branches. The Upper Level Ontology ODP is
general (low specificity), as every knowledge domain needs ULOs, and ULOs ideally
are applicable in different domains. Finally, the use efficiency is high because in order
to add a new entity complex axiomisation is not needed, only subclass and disjoint
axioms.

In terms of ontology engineering the Upper Level Ontology ODP presents high
scores in every area except in predictability of consequences (Figure 6.14). The pre-
dictability of consequences is medium due to the fact that an ULO, if fine grained,
imposes a concrete structure in which it is not always evident what problems will arise
in later stages of development, e.g. when adding a new branch.

16http://groups.google.com/group/bfo-discuss

http://groups.google.com/group/bfo-discuss

CHAPTER 6. EVALUATION RESULTS 144

Figure 6.13: ODP quality radar graph of the Upper Level Ontology ODP. The highest
qualities are obtained in modelling benefit, use efficiency, specificity and maintain-
ability; the lowest in inconsistency risk, tolerance to bad practice, and community
commitment.

Figure 6.14: Ontology engineering radar graph of the Upper Level Ontology ODP. Ev-
ery criterion gets a high score except predictability of consequences, which is medium.

CHAPTER 6. EVALUATION RESULTS 145

6.2.2 Sequence ODP in CCO

The ODP quality radar graph, in Figure 6.15, shows that the Sequence ODP gets an
average quality score in every area except in the areas of modelling benefit, commu-
nity commitment and documentation clarity, where it gets a high score. The modelling
benefit is high (high score) because the ODP fulfills a concrete modelling requirement,
namely putting items in order, that is a common structure in biology. The needed com-
munity commitment is low (high score), as the modelling only affects a concrete por-
tion of the ontology, and therefore a consensus can be promptly reached. The ODP is
clearly documented (high score), as the problem that it solves is thoroughly explained.

In Ontology engineering, in Figure 6.16, it can be seen that the ODP gets average
scores in every area except in prototyping, fast development and focused development,
where it gets high scores. The high score in prototyping is due to the fact that, as
sequential structures are a common requirement in biological knowledge, a prototype
bio-ontology can be built quickly using this ODP in combination with other ODPs. The
high scores in fast development and focused development are due to the same reason:
the Sequence ODP offers a way of modelling a concrete and recurrent requirement
in the biological domain, therefore allowing for a fast and focused development, as
applying this ODP saves development time and developers can invest their effort in
other areas of the bio-ontology.

6.2.3 Entity-Quality ODP in GO

As shown in the ODP quality radar graph of Figure 6.17, the Entity-Quality ODP
gets high scores in reasoning toll, community commitment, inconsistency risk, and
maintainability. The reasoning toll is low (high score) because this ODP does not rely
on automated reasoning, and the axiomisation is not complex enough to represent a low
automated reasoning performance. The community commitment needed is low (high
score), as the Entity-Quality ODP is conceptually simple, and therefore it is likely to
produce a consensus between the developers regarding the application of this ODP.
The inconsistency risk is low (high score) because this ODP does not create a structure
that is likely to produce inconsistencies, like a structure with a lot of disjoints or a
structure in which adding a further quality creates an inconsistency (e.g. in the Entity-
Property-Quality ODP the domain and range axioms can be misused). The ODP is
highly maintainable (high score) due to its axiomatic simplicity, especially in front
of the Entity-Feature-Value ODP. However, it should be noted that the QCR needed

CHAPTER 6. EVALUATION RESULTS 146

Figure 6.15: ODP quality radar graph of the Sequence ODP. There are three high
scores, the rest being average: modelling benefit, documentation clarity, and commu-
nity commitment.

Figure 6.16: Ontology engineering radar graph of the Sequence ODP. There are three
high scores (focused development, fast development, and prototyping) and the rest of
the scores are average.

CHAPTER 6. EVALUATION RESULTS 147

Figure 6.17: ODP quality radar graph of the Entity-Quality ODP. There are four high
scores, the rest being average: reasoning toll, community commitment, inconsistency
risk, and maintainability.

in the Entity-Quality ODP could be more difficult to maintain than the domain and
range axioms of the Entity-Property-Quality ODP, which fulfil the same modelling
requirement.

In Ontology engineering, as shown in Figure 6.18, reengineering stands out with a
high score, as this ODP can be reused for different qualities (it uses one object property
for every quality) and it is relatively easy to recycle it into the Entity-Property-Quality
ODP. The focused development quality is low, as the modelling that this ODP offers
does not address a complex modelling requirement.

6.2.4 Selector ODP in GO

The ODP quality radar graph of this ODP can be seen in Figure 6.19. Six areas get a
high score: use efficiency, specificity, maintainability, inconsistency risk, community
commitment and modelling toll. The use efficiency is high because it is relatively easy
to add a new relation from an entity to a selector value. The specificity is low, as this
ODP can be applied in any domain, and therefore the score is high. Maintainability and
inconsistency risk get a high score because the Selector ODP structure is axiomatically
simple, and therefore can be maintained without much effort and the likelihood of
producing inconsistencies is low. The community commitment is not demanding, as it

CHAPTER 6. EVALUATION RESULTS 148

Figure 6.18: Ontology engineering radar graph of the Entity-Quality ODP. There is
a high score, reengineering, and a low score, focused development, the rest being
average.

is conceptually a simple ODP, and the modelling toll is also low as the axiomisation of
the ODP is simple. The area that gets the worst score is the modelling probability, as
the modelling that this ODP shows is more likely to be found by a developer without
the aid of the ODP than other ODPs.

The Ontology engineering radar graph can be seen in Figure 6.20. The areas in
which this ODP gets a high score are debugging and reengineering, the rest being
average. Reengineering quality is high as due to its simplicity the ODP is likely to be
reused without problems. Debugging quality is high because, as this ODP pulls apart
entities and selector values, the modelling becomes cleaner and errors can be more
promptly spotted.

In terms of ontology quality, it should be noted that the Selector ODP was not
applied in a canonical way in GO, as the entities were maintained. Thus, coming
back to the original example, right hand and left hand were maintained. For ex-
ample, the class negative regulation of cytokine production was maintained
instead of refering to it in expressions like regulation and (is regulation type

some negative) and (regulates some cytokine production). This was done
in order to comply with the requirement of being able to annotate external entities with
GO terms. As noted in [74], the requirement for reducing the number of entities of this
ODP came from ontologies where such number could create a performance problem,
like FMA. That is not the case for GO, and the requirement of maintaining the terms
for annotation is more important.

CHAPTER 6. EVALUATION RESULTS 149

The application of this ODP resulted in the axiomatic enrichment of GO, and hence
improvent in querying and maintenance of the ontology. In terms of querying, more
fine grained queries could be performed, e.g. queries of the form is regulation type

some negative or regulates some cytokine production. The maintenance im-
proved due to the possibility of recreating the regulation hierarchy using inference.
Using inference makes the maintenance of such a hierarchy more efficient, as the com-
plete hierarchy is produced by the reasoner, and, if it is not produced, errors are
flagged in the axiomisation of such a hierarchy. The errors consisted mainly (but
not exclusively) in missing processes that were mentioned in regulation terms. For
example, axonemal microtubule depolymerization was mentioned in positive

regulation of axonemal microtubule depolymerization, but did not exist as
a standalone term in GO. Therefore, it did not get any extra axioms when the OPPL
script was executed (there was no filler for the restriction regulates some) and it
was left out of the regulation hierarchy when automated reasoning was performed,
being flagged as problematic. Some of such problems were reported to the GO staff
and new terms were added to the public version of GO, as shown in the GO curator
tracker17 (e.g. cytosolic calcium ion transport). The inferred regulation hier-
archy, shown in Figure 6.22, considerably resembles the original GO hierarchy, shown
in Figure 6.21. By applying the Selector ODP, the implicit axioms were made explicit
and errors present in the actual modelling were shown.

The application of this ODP resembles the application of the Normalisation ODP in
one aspect: the regulation hierarchy is recreated using defined classes, as happens with
the intermediate nodes in nCL. However, the similarity is structural but not conceptual:
the Selector ODP models selectors like positive and negative and the entities that are
selected by such selectors, whereas Normalisation models the fact that the same entity
can belong to many categories.

The Selector ODP was applied by querying the ontology with regular expressions,
which means that fine grained regular expressions need to be defined if the whole ontol-
ogy is to be processed. There comes a point, if too many regular expressions need to be
defined, that it may not pay off. Also, it could be that the regular expression captures
wrong terms. For example the term regulation of neurotransmitter levels

was captured but there is not (and should not be) a neurotransmitter levels pro-
cess. In any case, a few regular expressions led to a considerable axiomatic enrichment.

17http://sourceforge.net/tracker/?func=detail&atid=440764&aid=2445858&group_id=
36855

http://sourceforge.net/tracker/?func=detail&atid=440764&aid=2445858&group_id=36855
http://sourceforge.net/tracker/?func=detail&atid=440764&aid=2445858&group_id=36855

CHAPTER 6. EVALUATION RESULTS 150

Figure 6.19: ODP quality radar graph of the Selector ODP. Six criteria score high: use
efficiency, specificity, maintainability, inconsistency risk, community commitment and
modelling toll. One criterion, modelling probability, scores low.

Figure 6.20: Ontology engineering radar graph of the Selector ODP. Only two criteria
score high, the rest being average: reengineering and debugging.

Figure 6.21: Fragment of the GO biological regulation hierarchy. This hierarchy is
manually asserted by the GO curators.

CHAPTER 6. EVALUATION RESULTS 151

Figure 6.22: Fragment of the GO biological regulation hierarchy, recreated by auto-
mated reasoning. The new axiomisation resulting from the application of the Selector
ODP allowed the reasoner to infer the hierarchy, which resembles the one shown in
Figure 6.21.

6.2.5 Normalisation ODP in CL

Figure 6.23 shows the ODP quality radar graph, Figure 6.24 the Ontology engineering
radar graph, and Figure 6.25 the Ontology quality radar graph, comparing CL before
(CL) and after (nCL) applying the Normalisation ODP. The detailed values used to
produce the ontology quality radar graph are shown in Appendix B. In ontology quality,
another evaluation of the same set of ontologies was made by the MSc students of a
Semantic Web course of the University of Murcia18. Both evaluations of ontology
quality show that the nCL has a higher quality than CL.

In terms of ODP quality, it should be noted that both the reasoning toll quality and
the modelling toll quality are low. The reasoning toll is high (low quality) because
the ODP relies on the reasoner to maintain the whole structure of the ontology, which
will represent a high load for the reasoner. The modelling toll is high because a lot
of restrictions (at least one for each module or defined class) must be added, and in
the case of modules added as equivalent conditions (at least an equivalent restriction
per module). On the other hand, maintainability, modelling benefit and use efficiency
score high, thus this ODP has a good quality in those areas. The maintainability is high
because it is easier to maintain an exhaustive polyhierarchy using normalisation than
manually. In an asserted polyhierarchy, the curator needs to explore the whole structure
and add the appropriate subsumptions, which results in incomplete hierarchies [73, 89,
126]. In a normalised ontology, for any new added class the curator only needs to
follow the object properties, as if filling a form, and add the appropriate fillers: the
reasoner builds the polyhierarchy.

Modelling benefit is high due to the fact that the Normalisation affects the whole
ontology, so if the Normalisation is the needed ODP, it can be highly beneficial to

18http://dis.um.es/˜jfernand/icbo/

http://dis.um.es/~jfernand/icbo/

CHAPTER 6. EVALUATION RESULTS 152

the target ontology. In the case of use efficiency, as mentioned, adding content to a
normalised ontology is as simple as following the object properties and adding a filler
when pertinent, so adding a new primitive or defined class is an efficient process.

In terms of ontology engineering, the scores are high except for debugging and pre-
dictability of consequences, which get average scores. Principled modelling quality is
high because, as mentioned, Normalisation enforces a modelling dynamic that resem-
bles filling a form: when adding a new leaf cell, a curator only needs to go through
the object properties and add fillers. Also, Normalisation allows the extension of the
ontology in a more principled way: a new axis of classification (e.g. cells classified by
surface protein types [71]) can be added without affecting the rest of the axes. The fast
development high score is due to the fact that the Normalisation ODP facilitates col-
laboration between different curators that contribute with their own content, something
more difficult in an asserted polyhierarchy, making the development faster.

The score for debugging quality is average because, even though automated reason-
ing can be exploited for debugging, e.g. through justifications of entailments19 (Figure
6.26), the use of automated reasoning for maintaining the structure can sometimes be
difficult to debug. Predictability of consequences quality is also average because the
ODP relies on automated reasoning for maintaining the structure: some axioms may
yield unpredictable results, especially considering that, for generating the structure of
the intermediate nodes, plenty of defined classes must be created.

In Ontology quality, the only dimension in which CL scores higher than nCL is
in quality in use. This is due to the fact that CL is used by many more people and
projects, as nCL is simply an experiment that has not yet been published.

The structure of nCL is of better quality mainly because of the lack of tangledness,
although there are other criteria with high scores like the use of RO. Also, the axiomi-
sation is more explicit and richer (high cohesion), as the subsumptions are inferred
via restrictions: it is obvious why a class is a subclass of another class, as they both
have at least a restriction that is identical. For example, the class secretory cell will
have the restriction participates in some secretion as a necessary and sufficient
condition, and the class Chromaffin cell will have it as a necessary condition20, and
hence the subsumption relationship will be inferred.

The richer axiomisation of nCL also improves querying, as many more queries can
be done using restrictions, and combining different object properties. In CL, there is

19http://owl.cs.manchester.ac.uk/explanation/
20Most probably it will have a subclass of secretion as a filler.

http://owl.cs.manchester.ac.uk/explanation/

CHAPTER 6. EVALUATION RESULTS 153

no room for queries as everything is hard-coded in subsumptions and object properties
like ploidy, participates in are not used. With a rich axiomisation automated rea-
soning can be used to exploit transitivity of derives from. For example, we do not
have to state which cell is mesodermal, as it must be done in CL: fibroblast was clas-
sified as a subclass of mesodermal lineage cell, even though only derives from

some mesenchymal cell was stated.
The transitivity of the OWL subsumption relationship was also exploited by au-

tomated reasoning: as secondary spermatocyte participates in spermatogenesis,
which is a subclass of sexual reproduction, secondary spermatocyte was in-
ferred to be a subclass of sexual cell (transitivity of part of was also exploited for
inference, e.g. when a cell participated in a process that was part of another process).
Therefore, nCL, being a Normalised ontology, offers a wider range of functionalities
than CL, e.g. when used as part of applications [84], due to its richer axiomisation.

Functionality in nCL is of higher quality because the functionalities of inference,
decision support, reuse, instance classification and knowledge acquisition get a high
score, due to a richer axiomisation and hence more meaningful automated reasoning

Efficiency in nCL is lower because it makes a heavy use of automated reasoning.
Thus, it consumes a bigger amount of computational resources. However, it should
be noted that as the functionality in nCL is of higher quality, nCL will consume less
human resources.

Maintainability is of higher quality in nCL mainly because, as mentioned, auto-
mated reasoning can be exploited for maintenance, and therefore maintenance can be
done automatically. Note that the maintainability in the case of ontology engineering
compares the Normalisation ODP with other ODPs, and this maintainability compares
nCL with CL.

The use of the Normalisation ODP brought benefits also to GO, as the process of
performing the Normalisation in CL resulted in spotting missing terms in GO. The
GO biological process hierarchy was not, in some cases, fine grained enough to de-
scribe function attributes of cells from CL, so new terms were needed and, when pro-
posed to the GO curators, were accepted21: Prolactin secretion, somatotropin
secretion, thyroid stimulating hormone secretion and dentine secretion.

21http://sourceforge.net/tracker/index.php?func=detail&aid=2644865&group_id=
36855&atid=440764

http://sourceforge.net/tracker/index.php?func=detail&aid=2644865&group_id=36855&atid=440764
http://sourceforge.net/tracker/index.php?func=detail&aid=2644865&group_id=36855&atid=440764

CHAPTER 6. EVALUATION RESULTS 154

Figure 6.23: ODP quality radar graph of the Normalisation ODP. Three criteria get
high scores: modelling benefit, use efficiency, and maintainability. Another three cri-
teria get low scores: reasoning toll, modelling toll, and tolerance to bad practice.

This highlights the fact that, with a rich axiomisation and combining different bio-
ontologies via imports, spotting problems is much more likely than using isolated bio-
ontologies with a lean axiomisation, and the Normalisation ODP offers a procedure for
obtaining such rich axiomisation in a principled manner.

6.3 Conclusions

This chapter has described the application of concrete ODPs in publicly available
bio-ontologies: Upper Level Ontology ODP in CCO, Sequence ODP in CCO, Entity-
Quality ODP in GO, Selector ODP in GO, and Normalisation ODP in CL. Such ap-
plication has been evaluated using the framework described in Chapter 5, evaluating
ODP quality and ontology engineering in the five use cases and also ontology quality
in the Normalisation ODP in CL use case.

The contribution of the chapter is two fold: an explanation of how to use the eval-
uation framework, focusing on how to assign values to each criterion, and the results
of applying the evaluation framework to the use cases, providing data for a conclusion
regarding the usefulness of the usage of ODPs in bio-ontology engineering.

Therefore, the chapter has answered the following research questions:

CHAPTER 6. EVALUATION RESULTS 155

Figure 6.24: Ontology engineering radar graph of the Normalisation ODP. All the
criteria get high scores except two criteria that get average scores: predictability of
consequences and debugging.

Figure 6.25: Ontology quality radar graph of the Normalisation ODP. The area formed
by the diamonds represents the normalised ontology (nCL), and the area formed by the
squares the original ontology (CL). CL has a higher quality in the criteria of quality in
use and efficiency; in the rest of the areas nCL shows a higher quality, except in the
case of reliability were they both get the same score.

CHAPTER 6. EVALUATION RESULTS 156

Figure 6.26: Justifications of entailed axioms in nCL. When adding axioms to recreate
the structure of the intermediate cells some unexpected results were observed. Justifi-
cations of the entailments were used as a guide to the axioms causing this unwanted
inference.

How can we assess ODP quality? The criteria defined in Chapter 5 have been used
to evaluate the quality of the Upper Level Ontology ODP, the Sequence ODP,
Entity-Quality ODP, the Selector ODP, and the Normalisation ODP. The ratio-
nale used to assign the quality values has been explained.

How can we assess the impact of ODPs in bio-ontology engineering? The criteria
defined in Chapter 5 have been used to evaluate how the Upper Level Ontology
ODP, the Sequence ODP, Entity-Quality ODP, the Selector ODP, and the Nor-
malisation ODP influence the bio-ontology development process. The rationale
used to assign the quality values has been explained.

How does the use of ODPs change the quality of concrete bio-ontologies? The criteria
defined in Chapter 5 have been used to evaluate the quality change of CL before
and after applying the Normalisation ODP.

Chapter 7

Conclusions

ODPs are best practices of ontology engineering that tackle recurrent modelling issues
that arise when building and maintaining ontologies. Therefore ODPs can be used to
develop axiomatically rich and rigorous bio-ontologies.

Chapter 2 provided the rationale for the need for ODPs in bio-ontology engineer-
ing, and an overview of what ODPs are. In order to provide a technical infrastructure
for applying ODPs in OWL bio-ontologies, a public catalogue of ODPs and a scripting
language, OPPL, were created during this work, as described in Chapters 3 and 4, re-
spectively. A framework for evaluating ODPs and the change of bio-ontology quality
as a result of applying ODPs on them was presented in Chapter 5. The framework was
used to evaluate the application of ODPs in bio-ontologies, as described in Chapter 6.
This chapter provides the conclusions for the whole research, taking into account the
prior chapters.

The chapter is organised as follows. Section 7.1 reviews the research hypothesis
and the research questions introduced in Chapter 1, with respect to the overview of
ODPs from Chapter 2 and the results of applying ODPs in bio-ontologies from Chapter
6. Section 7.2 expands the contributions described in Chapter 1, taking into account
Chapters 2, 3 and 4. Section 7.3 reviews the outstanding issues, thus research items
that were planned but not completed, and Section 7.4 suggests items for future research
on ODPs for bio-ontologies. Section 7.5 provides an overall conclusion.

157

CHAPTER 7. CONCLUSIONS 158

7.1 Research hypothesis and research questions revis-
ited

The hypothesis of this thesis is that ODPs facilitate the creation of axiomatically rich
and rigorous bio-ontologies. Such a hypothesis can be decomposed into several re-
search questions. Each research question has been answered at a different point of the
thesis, and they confirm the hypothesis, as shown by the summary that follows.

7.1.1 What are ODPs?

A working definition of the notion of ODPs was provided in Chapter 2. ODPs are well
tested and documented modelling examples that solve concrete modelling problems
found when building bio-ontologies. ODPs are discrete fragments of modelling that
encapsulate concrete sets of axioms in modelling units with well known features and
problems. Therefore, ODPs increase the efficiency of the exploitation of OWL for
creating bio-ontologies, by guiding the bio-ontologist on how to use the expressivity
and rigour of OWL. ODPs are presented as OWL instances of abstract best practices
to ease their uptake and usage by bio-ontologists.

The advantages of the use of ODPs in bio-ontology engineering were also de-
scribed in Chapter 2. Some of those advantages were empirically confirmed by the
results from Chapter 6, revisited as follows:

Design

Rich and granular modelling: nCL presented a higher granularity than CL, as
the description of each cell had many more attributes than only is-a and
develops-from relationships, like ploidy, function, etc., as shown by
Table 6.1 and Figure 6.10. Also, after applying the Selector ODP, GO had
a higher granularity, as axioms representing the type of regulation (positive
or negative) were added, and GO’s axiomisation became explicit instead of
remaining implicit in the term names.

Robustness: The application of the Selector ODP in GO modified the ontology
so as to make it possible to flag errors promptly, and some of the flagged er-
rors were accepted and fixed in the public version of GO by its curators. In
the case of nCL, the usage of automated reasoning allowed the exploitation
of justifications of entailments for debugging the ontology.

CHAPTER 7. CONCLUSIONS 159

Modularity: By applying the Normalisation ODP, nCL presented a more mod-
ular structure than CL. There was only one axis of asserted subsumptions,
and the rest of the axes were inferred by the reasoner, resulting in a cleaner
model.

Automated reasoning: Both CL and GO have an axiomisation that cannot be
used for exploiting automated reasoning. Applying the Normalisation ODP
and the Selector ODP allowed the exploitation of automated reasoning in
both ontologies, for maintenance and querying.

Implementation

Focused development: The use of the Normalisation ODP allowed the bio-
ontologists to focus on deciding the attributes of each cell, instead of de-
ciding the overall structure of the ontology, as shown in Figure 6.24.

Collaborative development: By agreeing to use the Normalisation ODP, the
different bio-ontologists could more efficiently collaborate. This is due
to the fact that the ontology could be efficiently divided, as each of the
ontologists need only pick up a group of cells and add attributes to them.

Prototyping: In the first meeting of the CL experiment a prototype of a nor-
malised ontology was quickly setup by some participants, showing the
other bio-ontologists the benefits of such a prototype (maintenance of the
multiple inheritance by the reasoner, rich querying, etc.).

7.1.2 How can we obtain ODPs?

ODPs, being best practices that guide the bio-ontologists on how to use KR languages,
need to be consistently described and centralised in an online resource, therefore al-
lowing the bio-ontologists to efficiently explore them. A public online catalogue of
ODPs was presented in Chapter 3, in order to provide such resource.

7.1.3 How can we apply ODPs?

There are different methods for applying ODPs, as described in Chapter 2: manually,
OWL imports, Protégé wizards, macros, programmatic application, and Ontology Pre-
Processor Language (OPPL).

CHAPTER 7. CONCLUSIONS 160

OPPL has been used to apply ODPs in the use cases of Chapter 6, and has been
demonstrated to have an appropriate balance between expressivity and ease of use, as
it is based in a well known OWL syntax, MOS. OPPL implements the encapsulation of
modelling that ODPs offer to the user by codifying ODPs in OPPL scripts. Therefore,
the application of ODPs becomes automatic, traceable and flexible, and ODPs can be
shared between developers and applied on different bio-ontologies.

7.1.4 How can we assess ODP quality?

The online catalogue is designed to ease the selection of ODPs. ODPs can be further
assessed by using the ODP quality criteria described in Chapter 5: modelling proba-
bility, modelling benefit, use efficiency, specificity, documentation clarity, modelling
toll, reasoning toll, inconsistency risk, tolerance to bad practice, maintainability, and
community commitment. Using such criteria the bio-ontologist can make an informed
decision regarding which is the more adequate ODP to apply to the concrete scenario.

The ODPs from the use cases of Chapter 6 (ULO ODP in CCO, Sequence ODP
in CCO, Entity-Quality ODP in GO, Selector ODP in GO, Normalisation ODP in CL)
were evaluated in terms of such ODP quality, providing orientation for the user on the
possible problems associated with the use of those ODPs. From the four ODPs, there
were two that got the lowest scores in any of the criteria: the Upper Level Ontology
ODP and the Normalisation ODP. The Upper Level Ontology ODP scored low in the
criteria of community commitment, tolerance to bad practice and inconsistency risk.
The low score in community commitment should be noted, as it can be a serious prob-
lem when using this ODP: it requires a strong commitment from the curators on the
general modelling of the ontology, something difficult to achieve. The Normalisation
ODP scored low in the areas of reasoning toll, modelling toll, and tolerance to bad
practice. The low score on reasoning toll should be especially taken into account, as
depending on the available resources and the size of an ontology the automated rea-
soning overload can be considerable.

It can be concluded that, even though ODPs are useful modelling tools, the draw-
backs of each ODP should be taken into account when assessing its application in a
concrete scenario.

CHAPTER 7. CONCLUSIONS 161

7.1.5 How can we assess the impact of ODPs in bio-ontology engi-
neering?

The use of ODPs changes ontology engineering in different aspects and different ODPs
change the same aspect in different ways. Therefore different criteria were presented
in Chapter 5 to measure such changes and compare how different ODPs change the
engineering process: focused development, fast development, prototyping, reengineer-
ing, documentation of the process, communication between developers, predictability
of consequences, debugging, and principled modelling.

The ODP that got a lowest score in any of these criteria was the Entity-Quality
ODP, as mentioned in Chapter 6. This was due to the fact that the Entity-Quality ODP
does not contribute as much as the other ODPs to a more focused development, and
therefore potential users of such ODP should consider that negative aspect. Taking into
account the rest of the scores, it can be concluded that the use of ODPs makes ontology
engineering a more efficient process, demanding less effort from the bio-ontologists.

7.1.6 How can we assess the change of quality of bio-ontologies as
a result of applying ODPs?

A framework for evaluating ontology quality was presented in Chapter 5. The frame-
work is an adaptation of the ISO 9126 standard for evaluating software quality. An
area of evaluation was added to the framework (structural) to make it more suitable for
ontology quality evaluation. The most important feature of the ISO 9126 standard is
that it is not designed to provide absolute metrics, therefore allowing the performance
of a relative evaluation of two ontologies (before and after applying an ODP).

7.1.7 How does the use of ODPs change the quality of concrete bio-
ontologies?

The results of the evaluation presented in Chapter 6 confirm the idea that the use
of ODPs contributes to the creation of axiomatically richer and more rigorous bio-
ontologies. The quality of CL improved by applying the Normalisation ODP in the
following areas: functionality, reliability, maintainability, and structural.

Apart from the improvement in the quality of the bio-ontologies, the application
of ODPs brought other more direct results that were accepted by the bio-ontology

CHAPTER 7. CONCLUSIONS 162

curators, therefore providing a further demonstration of the usefulness of ODPs in bio-
ontology engineering. For example, by applying the Selector ODP, errors were flagged
in GO and some of these errors were accepted by the GO curators. As a result of ap-
plying the Normalisation ODP, some terms were requested in GO, as the biological
process subtree from GO was not sufficiently fine grained: such requests were also
approved by the GO curators.

7.2 Contributions

The general outcome of this thesis is an infrastructure that allows bio-ontologists to
understand, assess, create, publish, share, and apply ODPs in OWL bio-ontologies.
The more concrete contributions are reviewed as follows.

7.2.1 Explanation of the concept of ODPs

There is a lack of principled methodologies for bio-ontology engineering. A definition
of ODPs was provided, and the advantages of using ODPs reviewed. The idea of
ODPs has been presented to the bio-ontologists community, through publications [10,
30, 108] and a tutorial1.

7.2.2 Catalogue of ODPs

A resource for efficient exploration and sharing of ODPs has been built, in the form
of an online catalogue of ODPs2. The online catalogue has been used to collect al-
ready existing but scattered best practices and for systematically and more thoroughly
describing them in the form of ODPs, facilitating their use and comparison. The bio-
ontologists can use the online catalogue to explore and retrieve ODPs.

The main feature of the online catalogue is a schema for the description of ODPs, in
the form of documentation sections that must be filled in order to consistently describe
each ODP. Such schema facilitates the comprehension and exchange of ODPs between
bio-ontologists, and it ensures that new ODPs are consistently documented.

The description of each ODP is implemented in annotation values on the OWL file
that represents its structure, making it possible to exchange ODPs with their documen-
tation in a single file.

1http://www.co-ode.org/resources/tutorials/bio/
2http://odps.sf.net/

http://www.co-ode.org/resources/tutorials/bio/
http://odps.sf.net/

CHAPTER 7. CONCLUSIONS 163

7.2.3 OPPL

OPPL can be used for programmatically modifying OWL ontologies by adding or
removing axioms. OPPL is also able to perform DL queries, OWL queries about the
asserted axioms, and queries on the annotation values to retrieve entities on which
axiomatic changes can be performed.

One of the main applications of OPPL is as a means to apply ODPs program-
matically in OWL ontologies, and hence consistently and efficiently, by encapsulating
ODPs in OPPL scripts. However, OPPL can also be used for modifying and querying
OWL ontologies that are too big for manipulation through a graphical interface, or for
modifying OWL ontologies as part of automatic pipelines.

7.2.4 Evaluation framework for ontology quality

Ontology quality evaluation is still an open issue. The framework presented in this
thesis, based in adapting the ISO 9126 software quality standard to ontology require-
ments, is a first experimental step towards a more standard approach to the problem.

7.2.5 Improved ontological artefacts

CL, GO, and CCO were improved in the use cases, and the used OPPL scripts are
public (CL3, GO4 5, CCO6), so anyone can recreate the improvements or adapt the
scripts.

7.3 Outstanding issues

7.3.1 Candidate ODPs

In order for a candidate ODP to be added to the online catalogue, it must be tested and
thoroughly documented. Therefore, many candidate ODPs were left out of the online
catalogue simply due to resources limitations.

Different candidate ODPs have been proposed in the literature for concrete areas of
biological knowledge, like species taxonomy [96], chemical functional groups [119],

3http://www.gong.manchester.ac.uk/oppl.tar.gz
4http://www.gong.manchester.ac.uk/go_selector_odp_experiment.tar.gz
5http://www.gong.manchester.ac.uk/OPPL_EKAW2008.tar.gz
6http://www.cellcycleontology.org/download/supplementary-files

http://www.gong.manchester.ac.uk/oppl.tar.gz
http://www.gong.manchester.ac.uk/go_selector_odp_experiment.tar.gz
http://www.gong.manchester.ac.uk/OPPL_EKAW2008.tar.gz
http://www.cellcycleontology.org/download/supplementary-files

CHAPTER 7. CONCLUSIONS 164

or different levels of granularity [81]. Other modelling practices, not directly focused
on biological knowledge but adaptable to biological knowledge, have been presented,
e.g. as OWL “Diamonds” [56] and OWL “Intervals” [55]. All those examples are
promising best practices that should be suitable for inclusion in the online catalogue.

The addition of new ODPs to the online catalogue should also improve the evalu-
ation of ODP quality, as such evaluation compares ODPs. Therefore, the more ODPs,
the more informative the evaluation will be, as the evaluation of each ODP is relative
to the rest of ODPs.

7.3.2 Catalogue improvements

In terms of interface, the online catalogue should be more collaborative and dynamic,
as the only channel now for proposing ODPs is via the mailing list and the forum.
An ODP retrieval mechanism should also be devised. Such a mechanism could be
based in natural language processing, like the one proposed in [25], or in requirements
questions (e.g. Do you need to represent a parameter with different values?).

In terms of content, the classification of the ODPs should be done in a more hi-
erarchical, compositional and thorough manner, including different axes of classifica-
tion, making it possible to explore the online catalogue along such axes. For exam-
ple, the classification of ODPs according to their exploitation of automated reasoning
(dynamic/static ODPs), mentioned in Chapter 3, should be added. Another possible
classification to be added to the online catalogue is the classification according to ex-
pressivity of the ODP, by using OWL 2 profiles7.

Also, the documentation schema should be extended with additional sections, such
as an OPPL representation of the ODP, the version of the ODP, and the ODP quality and
ontology engineering radar graphs. The references section should also be improved,
by exploiting the fact that OWL 2 allows the annotation of axioms, to represent the
references with a finer granularity, e.g. by annotating an “article” item with further
Dublin Core values.

Finally, an evaluation of the online catalogue should have been defined and per-
formed.

7http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/

CHAPTER 7. CONCLUSIONS 165

7.3.3 Tools

Tooling was planned but not implemented. A Protégé plugin for the creation and docu-
mentation of ODPs should be developed. The creation of ODPs should be done either
by “recording” the modelling process (a functionality already present in the OPPL 2
Protégé plugin) or using a graphic language like UML or GrOWL. The plugin should
be directly connected to the online catalogue, being able to save an ODP in the cor-
rect format, and generate forms for the documentation, based on the documentation
schema.

Another Protégé plugin, for directly applying ODPs from the online catalogue,
should be developed. Such an application should be done either in one step (applying
the whole ODP once) or step by step (e.g. like in Protégé wizards).

7.3.4 Evaluation framework improvements

The presented evaluation framework can be improved in different aspects. The frame-
work should be refined with more and more precise structural metrics. For example,
the work on automatic explanations of entailments in OWL [60] can be adapted to
assess the axiomatic complexity of an OWL ontology. Also, more ODPs should be
evaluated, in order to refine ODP quality and ontology engineering assessments. Fi-
nally, the implementation of the framework should be improved, with questionnaires
and guidelines.

7.4 Future work

7.4.1 More ODPs

More ODPs should be created in order to represent biological knowledge in bio-
ontologies, e.g. ODPs for representing notions like phylogeny, development, temporal
aspects, defaults, etc. More ODPs should also be devised in order for the community
to “synchronise” with the new features and extensions of OWL 28.

7.4.2 Definition and representation of ODPs

A community-level agreement is needed for precisely defining the notion of ODPs.
Such a definition would make the uptake of ODPs as an engineering technique a faster

8http://www.w3.org/2007/OWL

http://www.w3.org/2007/OWL

CHAPTER 7. CONCLUSIONS 166

process.
A standard definition would also contribute to the graphical representation of ODPs,

an issue not yet solved. As mentioned, UML is the most widely used graphical repre-
sentation for OWL, but different authors use different UML profiles, even though there
is an initiative for standardising UML for OWL and RDF9, through the Ontology Def-
inition Metamodel (ODM) initiative10. There are alternatives to UML that are OWL
specific, like GrOWL or DLG2 notation11, but none of them is sufficiently mature.

7.4.3 ODPs mining

Bio-ontologies can be described in terms of the ODPs that are present in their structure.
Therefore, bio-ontologies can be automatically mined to extract ODPs from them and
assess their structure in order to find potential alignment areas.

7.5 Overall conclusion

The implantation and use of the Life Sciences Semantic Web (LSSW) is growing,
but there are still crucial developments that need to occur for a completely functional
LSSW to be in place [6]. Two of those developments are especially important: re-
solvable universal identifiers for biological entities (e.g. Shared Names12) and seman-
tically rich bio-ontologies. Semantically rich bio-ontologies widen the range of the
interactions of scientists with information, and make such interactions more efficient
by relying on computational inferences about disparate information.

In terms of achieving semantically rich bio-ontologies, one of the main problems
faced by the bio-ontologists’ community is the difficulty of exploiting the power of KR
languages like OWL. The use of ODPs helps in the development of bio-ontologies by
encapsulating such power in documented modelling units that can be applied in bio-
ontologies to solve concrete modelling problems. Therefore, ODPs help in codifying
more and more biological information into semantically rich bio-ontologies.

9http://www.w3.org/2007/OWL/wiki/UML_Concrete_Syntax
10http://www.omg.org/spec/ODM/1.0/Beta3/
11http://www.charlestoncore.org/dlg2/
12http://neurocommons.org/page/Common_Naming_Project

http://www.w3.org/2007/OWL/wiki/UML_Concrete_Syntax
http://www.omg.org/spec/ODM/1.0/Beta3/
http://www.charlestoncore.org/dlg2/
http://neurocommons.org/page/Common_Naming_Project

Bibliography

[1] J.S. Aitken, B.L. Webber, and J.B.L. Bard. Part-of Relations in Anatomy On-
tologies: a Proposal for RDFS and OWL Formalisations. In Proc. PSB, pages
166–177, 2004.

[2] Stuart Aitken. Formalizing concepts of species, sex and developmental stage in
anatomical ontologies. Bioinformatics, 21(11):2773–2779, 2005.

[3] Harith Alani and Christopher Brewster. Metrics for ranking ontologies. In 4th

Int. EON Workshop, 15th Int. World Wide Web Conf., 2006.

[4] Harith Alani, Christopher Brewster, and Nigel Shadbolt. Ranking Ontologies
with AKTiveRank. In The 5th International Semantic Web Conference (ISWC).
LNCS, 2006.

[5] E Antezana, M Egaña, B De Baets, M Kuiper, and V Mironov. ONTO-PERL:
An API supporting the development and analysis of bio-ontologies. Bioinfor-

matics, 24(6):885–887, 2008.

[6] Erick Antezana, Ward Blondé, Mikel Egaña, Alistair Rutherford, Robert
Stevens, Bernard De Baets, Vladimir Mironov, and Martin Kuiper. Biogateway:
A Semantic Systems Biology Tool for the Life Sciences. BMC bioinformatics,
accepted for publication, 2009.

[7] Erick Antezana, Mikel Egaña, Ward Blondé, Aitzol Illarramendi, Iñaki Bilbao,
Bernard De Baets, Robert Stevens, Vladimir Mironov, and Martin Kuiper. The
Cell Cycle Ontology: An application ontology for the representation and inte-
grated analysis of the cell cycle process. Genome Biology, 10(5):R58+, 2009.

[8] Erick Antezana, Elena Tsiporkova, Vladimir Mironov, and Martin Kuiper. A
Cell-Cycle Knowledge Integration Framework (DILS 2006). In LNBI 4075,
pages 19–34, 2006.

167

BIBLIOGRAPHY 168

[9] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer, 2nd Edi-

tion (Cooperative Information Systems). The MIT Press, 2008.

[10] Mikel Egaña Aranguren, Erick Antezana, Martin Kuiper, and Robert Stevens.
Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle
Ontology. BMC bioinformatics, 9(Suppl 5):S1, 2008.

[11] M. Bada, R. Stevens, C. Goble, Y. Gil, M. Ashburner, J.A. Blake, J.M. Cherry,
M. Harris, and S. Lewis. A Short Study on the Success of the Gene Ontology.
Web Semantics: Science, Services and Agents on the World Wide Web, 1(2):235–
240, 2004.

[12] Michael Bada and Lawrence Hunter. Identification of OBO nonalignments and
its implications for OBO enrichment. Bioinformatics, 24(12):1448–1455, 2008.

[13] Christopher J. O. Baker, Arash Shaban-Nejad, Xiao Su, Volker Haarslev, and
Greg Butler. Semantic Web infrastructure for fungal enzyme biotechnologists.
Web Semant., 4(3):168–180, 2006.

[14] Jonathan Bard, Seung Y Rhee, and Michael Ashburner. An Ontology for Cell
Types. Genome Biology, 6:R:21, 2005.

[15] S. K. Bechhofer, R. D. Stevens, and P. W. Lord. GOHSE: Ontology driven
linking of biology resources. Web Semant., 4(3):155–163, 2006.

[16] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scien-

tific American, MAY 2001.

[17] Eva Blomqvist and Kurt Sandkuhl. Patterns in ontology engineering: Classifi-
cation of ontology patterns. In ICEIS (3), pages 413–416, 2005.

[18] O Bodenreider and R Stevens. Bio-ontologies: current trends and future direc-
tions. Brief. Bioinformatics, 7(3):256–74, 2006.

[19] Sara Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler. Visual
Modelling of OWL DL Ontologies using UML. In Proc. ISWC, pages 198–213,
2004.

[20] Evelyn Camon, Michele Magrane, Daniel Barrell, Vivian Lee, Emily Dimmer,
John Maslen, David Binns, Nicola Harte, Rodrigo Lopez, and Rolf Apweiler.

BIBLIOGRAPHY 169

The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot
with Gene Ontology. Nucleic Acids Res, 32:D262–D266, Jan 2004.

[21] E.J. Chikofsky and J.H. Cross II. Reverse engineering and design recovery: A
taxonomy. Software Magazine, January:13–17, 1990.

[22] B.B. Chua and L.E. Dyson. Applying the ISO:9126 model to the evaluation
of an e-learning system. In R. Atkinson, C. Mcbeath, D. Jonas-Dwyer, and
R. Phillips, editors, Proceedings of the 21st ASCILITE Conference, 2004.

[23] Peter Clark, John Thompson, and Bruce Porter. Knowledge Patterns, pages
121–134. International Handbooks on Information Systems. Springer, 2003.

[24] John Day-Richter, Midori A A. Harris, Melissa Haendel, and Suzanna Lewis.
OBO-Edit–an ontology editor for biologists. Bioinformatics, 23(16):2198–
2200, 2007.

[25] Guadalupe Aguado de Cea, Asunción Gómez-Pérez, Elena Montiel-Ponsoda,
and Marı́a del Carmen Suárez-Figueroa. Natural Language-Based Approach
for Helping in the Reuse of Ontology Design Patterns. In A. Gangemi and
J. Euzenat, editors, EKAW, pages 32–47. Springer-Verlag, 2008.

[26] K. Degtyarenko, P. de Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught,
R. Alcántara, M. Darsow, M. Guedj, and M. Ashburner. ChEBI: a database and
ontology for chemical entities of biological interest. Nucleic Acids Research,
36:D344–D350, 2008.

[27] Jon Doyle and Ramesh S. Patil. Two theses of knowledge representation: lan-
guage restrictions, taxonomic classification, and the utility of representation ser-
vices. Artif. Intell., 48(3):261–297, 1991.

[28] Nicholas Drummond, Alan Rector, Robert Stevens, Georgina Moulton,
Matthew Horridge, Hai Wang, and Julian Sedenberg. Putting OWL in Order:
Patterns for sequences in OWL. In OWL Experiences and Directions (OWLEd),
2006.

[29] Mikel Egaña, Erick Antezana, and Robert Stevens. Transforming the Axiomi-
sation of Ontologies: The Ontology Pre-Processor Language. In OWLed DC,
2008.

BIBLIOGRAPHY 170

[30] Mikel Egaña, Alan Rector, Robert Stevens, and Erick Antezana. Applying On-
tology Design Patterns in Bio-ontologies. In A. Gangemi and J. Euzenat, editors,
EKAW 2008, LNCS 5268, pages 7–16. Springer-Verlag, 2008.

[31] James Farrugia. Model-theoretic semantics for the web. In WWW ’03: Pro-

ceedings of the 12th international conference on World Wide Web, pages 29–38.
ACM, 2003.

[32] Jesualdo Tomás Fernández-Breis, Mikel Egaña Aranguren, and Robert Stevens.
A Quality Evaluation Framework for Bio-Ontologies. In ICBO, 2009, accepted.

[33] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Professional Computing
Series. Addison-Wesley, 1995.

[34] A Gangemi, A Gomez-Perez, V Presutti, and Suarez-Figueroa. Towards a Cat-
alog of OWL-based Ontology Design Patterns. In CAEPIA 07, 2007.

[35] Aldo Gangemi. Ontology Design Patterns for Semantic Web Content. In LNCS

1729, ISWC, pages 262–276, 2005.

[36] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann.
Modelling ontology evaluation and validation. In ESWC, pages 140–154, 2006.

[37] Yong Gao, June Kinoshita, Elizabeth Wu, Eric Miller, Ryan Lee, Andy
Seaborne, Steve Cayzer, and Tim Clark. SWAN: A distributed knowledge in-
frastructure for Alzheimer disease research. Web Semant., 4(3):222–228, 2006.

[38] D. Gasevic, N. Kaviani, and M. Milanovic. Handbook on Ontologies, chapter
Ontologies and Software Engineering. Springer, 2008.

[39] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Architec-

ture and Ontology Development. 2006.

[40] Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.
Nature Genetics, 23(May):25–29, 2000.

[41] Gene Ontology Consortium. The Gene Ontology project in 2008. Nucleic acids

research, 36(Database issue), 2008.

BIBLIOGRAPHY 171

[42] Andrew Gibson, Katy Wolstencroft, and Robert Stevens. Promotion of onto-
logical comprehension: Exposing terms and metadata with web 2.0. In WWW,
2007.

[43] CA Goble and CJ Wroe. The Montagues and the Capulets. Comparative and

Functional Genomics, 2:623–632, 2004.

[44] Carole Goble and Robert Stevens. State of the nation in data integration for
bioinformatics. Journal of Biomedical Informatics, 41:687–693, 2008.

[45] Christine Golbreich, Matthew Horridge, Ian Horrocks, Boris Motik, and Rob
Shearer. OBO and OWL: Leveraging Semantic Web Technologies for the Life
Sciences. In ISWC/ASWC, pages 169–182, 2007.

[46] Christine Golbreich and Ian Horrocks. The OBO to OWL Mapping, GO to
OWL 1.1! In OWLED, 2007.

[47] A. Gomez-Perez and N. Juristo. METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. In Engineering Workshop on Ontological

Engineering (AAAI97), 1997.

[48] Asuncion Gomez-Perez and Maria Dolores Rojas-Amaya. Lecture Notes in

Computer Science 1621, chapter Ontological Reengineering for Reuse, pages
139–156. 1999.

[49] Benjamin M. Good and Mark D. Wilkinson. The Life Sciences Semantic Web
is Full of Creeps! Brief Bioinform, 7(3):275–286, September 2006.

[50] B. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
OWL 2: The next step for OWL. Web Semantics: Science, Services and Agents

on the World Wide Web, (6):309–322, 2008.

[51] Pierre Grenon, Barry Smith, and Louis Goldberg. Biodynamic Ontology: Ap-
plying BFO in the Biomedical Domain. In D. M. Pisanelli, editor, Ontologies

in Medicine, pages 20–38. IOS Press, 2004.

[52] Nicola Guarino and Christopher A. Welty. An Overview of OntoClean, chap-
ter 8, pages 151–172. Springer, 2004.

BIBLIOGRAPHY 172

[53] Frank W. Hartel, Sherri de Coronado, Robert Dionne, Gilberto Fragoso, and
Jeniffer Golbeck. Modeling a Description Logic Vocabulary for Cancer Re-
search. Journal of Biomedical Informatics, (38):114–129, 2005.

[54] Robert Hoehndorf, Frank Loebe, Janet Kelso, and Heinrich Herre. Representing
default knowledge in biomedical ontologies: Application to the integration of
anatomy and phenotype ontologies. BMC Bioinformatics, 8(1), 2007.

[55] Rinke Hoekstra. Use of OWL in the Legal Domain. In OWL: Experiences and

Directions (OWLED), 2008.

[56] Rinke Hoekstra and Joost Breuker. Polishing Diamonds in OWL 2. In
A. Gangemi and J. Euzenat, editors, EKAW 2008, LNCS 5268, pages 64–73.
Springer-Verlag, 2008.

[57] M Horridge, N Drummond, J Goodwin, A Rector, R Stevens, and H Wang. The
Manchester OWL syntax. In OWLed, 2006.

[58] Matthew Horridge, Johannes Bauer, Bijan Parsia, and Ulrike Sattler. Under-
standing Entailments in OWL. In OWLED, 2008.

[59] Matthew Horridge, Sean Bechhofer, and Olaf Noppens. Igniting the OWL 1.1
Touch Paper: The OWL API. In Christine Golbreich, Aditya Kalyanpur, and
Bijan Parsia, editors, OWLED, volume 258 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[60] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and Precise Justifi-
cations in OWL. In ISWC 2008, LNCS 5318, pages 323–338. Springer-Verlag,
2008.

[61] Luigi Iannone, Mikel Egaña, Alan Rector, and Robert Stevens. Augmenting the
Expressivity of the Ontology Pre-Processor Language. In OWL: Experiences

and Directions (OWLED Eu). Poster and short presentation, 2008.

[62] Luigi Iannone, Alan Rector, and Robert Stevens. Embedding Knowledge Pat-
terns into OWL. In The Semantic Web: Research and Applications, LNCS 5554,
pages 218–232. Springer-Verlag, 2009.

[63] Eilbeck K., Lewis S.E., Mungall C.J., Yandell M., Stein L., Durbin R., and
Ashburner M. The Sequence Ontology: A tool for the unification of genome
annotations. Genome Biology, (6):R44, 2005.

BIBLIOGRAPHY 173

[64] S. Kerrien, Y. Alam-Faruque, B. Aranda, I. Bancarz, A. Bridge, C. Derow,
E. Dimmer, M. Feuermann, A. Friedrichsen, R. Huntley, C. Kohler, J. Khadake,
C. Leroy, A. Liban, C. Lieftink, L. Montecchi-Palazzi, S. Orchard, J. Risse,
K. Robbe, B. Roechert, D. Thorneycroft, Y. Zhang, R. Apweiler, and H. Herm-
jakob. IntAct - Open Source Resource for Molecular Interaction Data. Nucleic

Acids Research, 35:D561–D565, 2007.

[65] P. Khatri and S. Drăghici. Ontological analysis of gene expression data: cur-
rent tools, limitations, and open problems. Bioinformatics, 21(18):3587–3595,
September 2005.

[66] Sergey Krivov, Richard Williams, and Ferdinando Villa. GrOWL: A tool for
visualization and editing of OWL ontologies. Web Semantics: Science, Services

and Agents on the World Wide Web, 5(2):54–57, 2007.

[67] Anand Kumar, Barry Smith, and Daniel D. Novotny. Biomedical Informatics
and Granularity. Comparative and Functional Genomics, 5:501–508, 2004.

[68] Y. Lazebnik. Can a biologist fix a radio? – or, what I learned while studying
apoptosis. Biochemistry (Moscow), 69(12):1403–1406, 2004.

[69] Mariano Fernandez López, Asunción Gómez-Pérez, Juan Pazos Sierra, and
Alejandro Pazos Sierra. Building a Chemical Ontology Using Methontology
and the Ontology Design Environment. IEEE Intelligent Systems, 14(1):37–46,
1999.

[70] Joanne Luciano and Robert Stevens. OWL - PAX of mind or the AX that caused
the split? In OWL: Experiences and Directions (OWLED), 2008.

[71] Anna Masci, Cecilia Arighi, Alexander Diehl, Anne Lieberman, Chris Mungall,
Richard Scheuermann, Barry Smith, and Lindsay Cowell. An improved onto-
logical representation of dendritic cells as a paradigm for all cell types. BMC

Bioinformatics, 10(1):70, 2009.

[72] Mikel Egaña Aranguren, Sean Bechhofer, Phillip Lord, Ulrike Sattler, and
Robert Stevens. Understanding and using the meaning of statements in a bio-
ontology: recasting the Gene Ontology in OWL. BMC Bioinformatics, 8:57,
2007.

BIBLIOGRAPHY 174

[73] Mikel Egaña Aranguren, Chris Wroe, Carole Goble, and Robert Stevens. In situ
migration of handcrafted ontologies to reason-able forms. Data and Knowledge

Engineering, 66(1):147–162, 2008.

[74] Eleni Mikroyannidi, Alan Rector, and Robert Stevens. Abstracting and Gener-
alising the Foundational Model Anatomy (FMA) Ontology. In bio-ontologies

SIG, 2009.

[75] C. J. Miller and T. K. Attwood. Bioinformatics goes back to the future. Nature

Rev. Mol. Cell Biol., 4.

[76] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL
with Rules. Journal of Web Semantics: Science, Services and Agents on the

World Wide Web, 3(1):41–60, JUL 2005.

[77] C.J. Mungall. OBOL: integrating language and meaning in bio-ontologies.
Comparative and Functional Genomics, 5(6):509–520, 2004.

[78] Eric K. Neumann, Eric Miller, and John Wilbanks. What the Semantic Web
could do for Life Sciences. Biosilico, 2(6):228–236, 2004.

[79] C. Pasquier. Biological data integration using Semantic Web technologies.
Biochimie, 2008.

[80] Lennart J. Post, Marco Roos, Scott M. Marshall, Roel Driel, and Timo M. Breit.
A Semantic Web approach applied to integrative bioinformatics experimenta-
tion: a biological use case with genomics data. Bioinformatics, 23(22):3080–
3087, 2007.

[81] A.L. Rector, J.E. Rogers, and T. Bittner. Granularity Scale and Collectiv-
ity: When Size Does and Doesn’t Matter. Journal of Biomedical informatics,
539:333–349, 2006.

[82] Alan Rector. Analysis of propagation along transitive roles: Formalisation of
the GALEN experience with medical ontologies. In DL, 2002.

[83] Alan L. Rector. Modularisation of Domain Ontologies Implemented in Descrip-
tion Logics and related formalisms including OWL. In K-CAP, pages 121–128,
2003.

BIBLIOGRAPHY 175

[84] Alan L. Rector and Sebastian Brandt. Why do it the hard way? The Case for an
Expressive Description Logic for SNOMED. Journal of the American Medical

Informatics Association : JAMIA, August 2008.

[85] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger
Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. OWL Pizzas: Prac-
tical Experience of Teaching OWL-DL: Common Errors and Common Pat-
terns. In Enrico Motta, Nigel Shadbolt, Arthur Stutt, and Nicholas Gibbins,
editors, EKAW, volume 3257 of Lecture Notes in Computer Science, pages 63–
81. Springer, 2004.

[86] Alan L Rector and Jeremy Rogers. Patterns, Properties and Minimizing Com-
mitment: Reconstruction of the GALEN Upper Ontology in OWL. In EKAW,
2004.

[87] Alan L. Rector, Chris Wroe, Jeremy Rogers, and Angus Roberts. Untangling
Taxonomies and Relationships: personal and Practical Problems in Loosely
Coupled Development of Large Ontologies. In K-CAP, pages 139–146, 2001.

[88] Jacqueline Renée Reich. Ontological Design Patterns: Metadata of Molecular
Biological Ontologies, Information and Knowledge. In M. Ibrahim, J. Kung,
and N. Revell, editors, DEXA, pages 698–709, 2000.

[89] J. Rogers, C. Price, A. Rector, W. Solomon, and N. Smejko. Validating Clinical
Terminology Structures: Integration and Cross-Validation of Read Thesaurus
and GALEN Proc AMIA Symp. Journal of the American Medical Informatics

Association, pages 845–849, 1998.

[90] Jeremy Rogers and Alan Rector. GALEN’s Model of Parts and Wholes: Expe-
rience and Comparisons. In Proc. AMIA symp, pages 714–718, 2000.

[91] Cornelius Rosse and José L. V. Mejino. A reference ontology for biomedical
informatics: the foundational model of anatomy. J. of Biomedical Informatics,
36(6):478–500, 2003.

[92] Alan Ruttenberg, Tim Clark, William Bug, Matthias Samwald, Olivier Bo-
denreider, Helen Chen, Donald Doherty, Kerstin Forsberg, Yong Gao, Vipul
Kashyap, June Kinoshita, Joanne Luciano, Scott M. Marshall, Chimezie Ogbuji,

BIBLIOGRAPHY 176

Jonathan Rees, Susie Stephens, Gwendolyn Wong, Elizabeth Wu, Davide Za-
ccagnini, Tonya Hongsermeier, Eric Neumann, Ivan Herman, and Kei H. Che-
ung. Advancing translational research with the Semantic Web. BMC Bioinfor-

matics, 8(Suppl 3), 2007.

[93] S. Schulz, K. Marko, and U. Hahn. Spatial location and its relevance for termi-
nological inferences in bio-ontologies. BMC Bioinformatics, 8(1):134, 2007.

[94] Stefan Schulz and Udo Hahn. Part-whole representation and reasoning in formal
biomedical ontologies. Artif Intell Med, 34(3):179–200, 2005.

[95] Stefan Schulz, Martin Romacker, and Udo Hahn. Part-Whole Reasoning in
Medical Ontologies Revisited - Introducing SEP triplets into Classification-
based Description Logics. In Proceedings of the 1998 AMIA Annual Fall Sym-

posium. A Paradigm Shift in Health Care Information Systems: Clinical Infras-

tructures for the 21st Century, pages 830–834. Hanley and Belfus, 1998.

[96] Stefan Schulz, Holger Stenzhorn, and Martin Boeker. The ontology of biologi-
cal taxa. Bioinformatics, 24(13):i313–321, July 2008.

[97] Julian Seidenberg and Alan Rector. Representing Transitive Propagation in
OWL. In LNCS 4215, ER, 2006.

[98] Stefan Shultz and Udo Hahn. Part-whole representation and reasoning in formal
biomedical ontologies. Artificial Intelligence in Medicine, 34:179–200, 2005.

[99] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In
OWLED, 2007.

[100] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semant., 5(2):51–
53, 2007.

[101] B Smith, W Ceusters, B Klagges, J Kohler, A Kumar, J Lomax, CJ Mungall,
F Neuhaus, A Rector, and C Rosse. Relations in Biomedical Ontologies.
Genome Biology, 6:R46, 2005.

[102] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William
Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland,

BIBLIOGRAPHY 177

Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Rutten-
berg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patri-
cia L. Whetzel, and Suzanna Lewis. The OBO Foundry: coordinated evolution
of ontologies to support biomedical data integration. Nat Biotech, 25(11):1251–
1255, November 2007.

[103] Barry Smith, Jacob Köhler, and Anand Kumar. On the Application of Formal
Principles to Life Science Data: A Case Study in the Gene Ontology. In Interna-

tional Workshop on Data Integration in the Life Sciences (DILS 2004), Lecture
Notes in Computer Science. Springer, March 2004.

[104] Barry Smith and Anand Kumar. Controlled vocabularies in bioinformatics: a
case study in the Gene Ontology. Biosilico, 2(6):246–252, 2004.

[105] Barry Smith, Jennifer Williams, and Steffen Schulze-Kremer. The Ontology
of the Gene Ontology. In Annual symposium of American Medical Informatics

Association (AMIA), 2003.

[106] Larisa N. Soldatova and Ross D. King. Are the Current Ontologies in Biology
Good Ontologies? Nature Biotechnology, 23(9):1095–1098, 2005.

[107] Steffen Staab, Michael Erdmann, and Alexander Maedche. Engineering On-
tologies Using Semantic Patterns. In Preece A, and O’Leary, D, editor, IJCAI,
pages 198–213, 2001.

[108] Robert Stevens, Mikel Egaña Aranguren, Katy Wolstencroft, Ulrike Sattler,
Nick Drummond, Matthew Horridge, and Alan Rector. Using OWL to model
biological knowledge. Int. J. Hum.-Comput. Stud., 65(7):583–594, 2007.

[109] Robert Stevens and Phillip Lord. Handbook on Ontologies in Information Sys-

tems, chapter Application of ontologies in bioinformatics. Springer.

[110] Robert Stevens, Chris Wroe, Phillip Lord, and Carole Goble. Handbook On-

tologies in Information Systems, chapter Ontologies in bioinformatics, pages
635–657. Springer, 2003.

[111] Rudi Studer, Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. DKE, 25(1-2):161–198, 1998.

BIBLIOGRAPHY 178

[112] Svatek V. Design Patterns for Semantic Web Ontologies: Motivation and Dis-
cussion. In 7th Conference on Business Information Systems, Poznan, 2004.

[113] Samir Tartir and I. Budak Arpinar. Ontology Evaluation and Ranking using
OntoQA. In International Conference on Semantic Computing, pages 185–192,
2007.

[114] Adolfo Lozano Tello and Asunción Gómez-Pérez. ONTOMETRIC: A Method
to Choose the Appropriate Ontology. J. Database Manag., 15(2):1–18, 2004.

[115] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: Sys-
tem Description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJ-

CAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–
297. Springer, 2006.

[116] Uniprot Consortium. The Universal Protein Resource (UniProt). Nucleic Acids

Research, 35(Jan):D193–D197, 2007.

[117] A VanDeursen, P Klint, and Visser J. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35(6).

[118] N. Villanueva-Rosales and M. Dumontier. yOWL: An ontology-driven knowl-
edge base for yeast biologists. Journal of biomedical informatics, 2008.

[119] Natalia Villanueva-Rosales and Michel Dumontier. Describing Chemical Func-
tional Groups in OWL-DL for the Classification of Chemical Compounds. In
Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors, OWLED, vol-
ume 258 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[120] Johanna Völker, Denny Vrandecic, and York Sure. Automatic Evaluation
of Ontologies (AEON). In Y. Gil, E. Motta, V. R. Benjamins, and M. A.
Musen, editors, Proceedings of the 4th International Semantic Web Conference

(ISWC2005), volume 3729 of LNCS, pages 716–731. Springer Verlag Berlin-
Heidelberg, 2005.

[121] Denny Vrandecić. Explicit Knowledge Engineering Patterns with Macros. In
Chris Welty and Aldo Gangemi, editors, Ontology Patterns for the Semantic

Web Workshop (ISWC), 2005.

BIBLIOGRAPHY 179

[122] Denny Vrandecic and York Sure. How to design better ontology metrics. In
Enrico Franconi, Michael Kifer, and Wolfgang May, editors, The Semantic Web:

Research and Applications — Proceedings of the 4th European Semantic Web

Conference (ESWC 2007), number 4519 in Lecture Notes in Computer Science,
pages 311–325. Springer, 2007.

[123] C. Welty, M. Gruninger, F. Lehmann, D. McGuinness, and M. Uschold. Ontolo-
gies: Expert systems all over again? In AAAI-1999 Invited Panel., 1999.

[124] John Wilbanks and William Neal. Introduction to science commons.
www.sciencecommons.org, 2006.

[125] K. Wolstencroft, R. Mcentire, R. Stevens, L. Tabernero, and A. Brass.
Constructing ontology-driven protein family databases. Bioinformatics,
21(8):1685–1692, 2005.

[126] Chris J. Wroe, James J. Cimino, and Alan L. Rector. Integrating Existing Drug
Formulation Terminologies Into an HL7 Standard Classification using Open-
GALEN. In Annual Fall Symposium of American Medical Informatics Associa-

tion, Washington DC., November 2001.

[127] Iwei Yeh, Peter D. Karp, Natasha F. Noy, and Russ B. Altman. Knowledge
acquisition, consistency checking and concurrency control for Gene Ontology
(GO). Bioinformatics, 19(2):241–248, 2003.

[128] A. Young, N. Whitehouse, J. Cho, and C. Shaw. OntologyTraverser: an R
package for GO analysis. Bioinformatics, 21(2):275–276, 2005.

[129] A. C. Yu. Methods in biomedical ontology. Journal of Biomedical Informatics,
39(3):252–266, June 2006.

Appendix A

The Catalogue of Ontology Design
Patterns

A.1 Adapted SEP ODP

ALSO KNOWN AS: Transitive propagator.

CLASSIFICATION: Domain Modelling.

MOTIVATION: In the biomedical domain the propagation of properties along the
partonomy relation is very important. For example, there are cases where the
fault of the part should be assumed to be a fault of the whole (an appendix
perforation is an intestine perforation) and other cases where it should not be
considered like that (appendicitis is not enteritis). The problem of propagat-
ing properties along partonomy relates directly to the problem of (for example)
overloading PartOf in the Gene Ontology: for example Location, a property that
should propagate along (or not) with PartOf , is always implicitly present any-
where there is a PartOf relation. For example Polarisome is PartOf CellCortex
and PartOf SiteOfPolarizedGrowth, inheriting both locations, creating a conflict:
polarisome is not located in the whole of the cell cortex, is only located in the
cell cortex in the site of polarised growth.

AIM: To model selective transitive propagation.

STRUCTURE: See Figure A.1.

SAMPLE: See Figure A.2.

180

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 181

Figure A.1: Abstract structure of the Adapted SEP ODP.

Figure A.2: Sample structure of the Adapted SEP ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 182

ELEMENTS: The elements of the partonomy hierarchy are maintained and in this
case two new elements are added to represent concrete locations in the cell (Cel-
lularLocationPole and CellularLocationPeriphery). The PartOf relationship is
maintained (defined as transitive) and in this case a new object property is added
to link locations with cellular components, CellularLocationOf.

IMPLEMENTATION: The most important step is to define the class CellularLoca-
tionPoleOfGrowth as the location of SiteOfPolarizedGrowth or any of its parts,
so the location is propagated to the parts (but it is not propagated in the case of
CellCortex).

RESULT: The location property CellularLocationOf is propagated along PartOf in a
selective way, allowing for a precise and unambiguous definition of the polar-
isome location. To check the result two classes can be created: Polarisome-
Location [partial CellularLocationOf some Polarisome] and SiteOfPolarised-
GrowthLocation [complete cellularLocationOf some (SiteOfPolarisedGrowth and
PartOf some SiteOfPolarisedGrowth)]. After reasoning PolarisomeLocation should
be a subclass of SiteOfPolarisedGrowthLocation.

ADDITIONAL INFORMATION: There have been different proposals in the liter-
ature for modelling transitive propagation in the biomedical domain. The ap-
proach chosen for this ODP relies on the possibility of creating transitive object
properties given by OWL DL. Another approach is the one described by Stefan
Shultz and Udo Hahn (see references), which relies in simulating the transitivity
by creating SEP triples (Structure - Entity - Part) for each class of the partonomy
hierarchy, allowing for selective inheritance of properties.

REFERENCES:

• Alan L Rector and Sebastian Brandt. Why do it the hard way? The Case for
an Expressive Description Logic for SNOMED. JAMIA (28 August 2008).

• http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

• Julian Seidenberg, Alan Rector. ”Representing transitive propagation in
OWL”. ER2006.

• Stefan Shultz and Udo Hahn. Part-whole representation and reasoning in
formal biomedical ontologies. Artificial Intelligence in Medicine, 34: 179-
200, 2005.

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 183

Figure A.3: Abstract structure of the Closure ODP.

URL: Adapted SEP.owl

A.2 Closure ODP

CLASSIFICATION: Good Practice.

MOTIVATION: OWL sometimes is anti-intuitive due to the Open World Assump-
tion. One of the examples of such problem is the fact that plenty of users think
that asserting an existential restriction is enough to close a relationship, when in
fact a universal restriction is also needed: it is not enough to say that carnivore
eats some meat, as that is equivalent to saying that it can eat another things apart
of meat.

AIM: Simulate the closed world assumption in a concrete class.

STRUCTURE: See Figure A.3.

SAMPLE: See Figure A.4.

ELEMENTS: The only element to take into account is the object property that will
be used to produce the closure.

IMPLEMENTATION: The only necessary step is to add an existential restriction
and an universal restriction with the same filler.

RESULT: The closure axiom allows to close the world and express that something
has got a property and only that property. For example, following the example,
without the closure (without the universal restriction) carnivore and herbivore

http://www.gong.manchester.ac.uk/odp/owl/Domain_Modelling_ODP/Adapted_SEP.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 184

Figure A.4: Sample structure of the Closure ODP.

would appear as subclasses of omnivore. However, with the closure axiom, they
do not.

REFERENCES:

• Explicit Knowledge Engineering Patterns with Macros. Denny Vrandecic.
In Proceedings of the Ontology Patterns for the Semantic Web Workshop
(ISWC 2005).

• Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Hol-
ger Knublauch, Robert Stevens, Hai Wang, Chris Wroe. OWL Pizzas:
Practical Experience of Teaching OWL-DL: Common Errors and Com-
mon Patterns. In Proceedings of the European Conference on Knowledge
Acquistion, 2004. LNCS- LNAI 3257, Springer-Verlag.pp 63-81.

URL: Closure.owl

A.3 Composite Property Chain ODP

CLASSIFICATION: Domain Modelling.

MOTIVATION: A composite chain can be appreciated by the following example:
the son of the brother of my father is my cousin. The same structure can be

http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Closure.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 185

Figure A.5: Abstract structure of the Composite Property Chain ODP.

applied for modelling, for example, the sucessive modifications that a protein
goes through. The key on the composite chain is that there are two chains, but
one of them is composed by a relationship that will be inferred by the reasoner:
the reasoner will first infer that the brother of my father is my uncle (first chain:
father + brother = uncle), and then that the son of my uncle is my cousin (second
chain: uncle + son = cousin). The property uncle is common to both chains.

AIM: To model a double chain of properties, i.e. two chains that link four individuals.

STRUCTURE: See Figure A.5.

SAMPLE: See Figure A.6.

ELEMENTS: This ODP is made by five object properties, grouped in two chains.
Both chains have one object property in common: in one of them it is the head
and in the other it is one of the precedents.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 186

Figure A.6: Sample structure of the Composite Property Chain ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 187

Figure A.7: Abstract structure of the Defined Class Description ODP.

IMPLEMENTATION: The only main step of this ODP is to create both chains, and
to link the appropriate individuals.

RESULT: The double chain is modelled. This allows for queries with the composite
properties (e.g. has uncle and has cousin).

REFERENCES:

• http://odps.sourceforge.net

URL: Composite Property Chain.owl

A.4 Defined Class Description ODP

CLASSIFICATION: Good Practice.

MOTIVATION: If-Then structures are very common and intuitive and this ODP of-
fers the possibility of representing them within OWL DL expressivity.

AIM: To simulate an If-Then of the type: if something fullfills certain conditions, it
should have a further given attribute.

STRUCTURE: See Figure A.7.

SAMPLE: See Figure A.8.

ELEMENTS: the important elements are the class that is being used to simulate the
rule and the properties that are used in the condition (the equivalent restrictions)
and the conclusion (the neccesary restrictions).

http://odps.sourceforge.net
http://www.gong.manchester.ac.uk/odp/owl/Domain_Modelling_ODP/Composite_Property_Chain.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 188

Figure A.8: Sample structure of the Defined Class Description ODP.

RESULT: The If-Then rule is represented in the ontology and can be used, for exam-
ple, when adding new classes and performing reasoning: if a class fulfill the If
condition, it will have also the Then attribute.

REFERENCES:

• Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Hol-
ger Knublauch, Robert Stevens, Hai Wang, Chris Wroe. OWL Pizzas:
Practical Experience of Teaching OWL-DL: Common Errors and Com-
mon Patterns. In Proceedings of the European Conference on Knowledge
Acquistion, 2004. LNCS- LNAI 3257, Springer-Verlag.pp 63-81.

URL: DefinedClass Description.owl

A.5 Entity-Feature-Value ODP

CLASSIFICATION: Good Practice.

MOTIVATION: This ODP is used to represent modifiers with multiple aspects, thus
features (e.g. colour with a certain brightness and saturation).

AIM: To model features with the simplest structure possible.

STRUCTURE: See Figure A.9.

SAMPLE: See Figure A.10.

ELEMENTS: The most important elements are the object properties (one for each
aspect), the feature, and the values of the aspects.

http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/DefinedClass_Description.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 189

Figure A.9: Abstract structure of the Entity-Feature-Value ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 190

Figure A.10: Sample structure of the Entity-Feature-Value ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 191

IMPLEMENTATION: For each aspect of the feature, an object property and a value
partition should be created. For each of them, the domain should be the class
Feature and the range the aspect value. The feature is really an Nary relationship
ODP, and it is linked to each aspect by existential restrictions. The entity is
linked to the feature with a Qualified Cardinality Restriction (QCR) of exactly
one.

RESULT: The entities, que features of those entities and the aspects of the features
are properly separated.

SIDE EFFECTS: Although this ODP can obviously handle multi aspect qualities, it
is difficult to author because of the amount of entities that need to be added.

ADDITIONAL INFORMATION: See also the Entity-Quality ODP and the Entity-
Property-Value ODP.

REFERENCES:

• Alan Rector (Personal Communication).

• A. Gangemi, N. Guarino, C. Masolo, A. Oltramari and L. Schneider. Sweet-
ening ontologies with dolce. In: LNCS, EKAW. (2002) 166-182.

• Mikel Egana, Alan Rector, Robert Stevens and Erick Antezana. Applying
Ontology Design Patterns in bio-ontologies. EKAW 2008. LNCS 5268,
pp. 7-16, 2008.

URL: Entity Feature Value.owl

A.6 Entity-Property-Quality ODP

CLASSIFICATION: Good Practice.

MOTIVATION: Qualities (modifiers) are refining entities, thus refine or modify the
description of another (independent) entity. They are very important in many
domains. They should not be confused with selectors (e.g. left hand), although
both modifiers and selectors are refining entities.

AIM: To model qualities of independent entities (e.g. position, colour, ...).

STRUCTURE: See Figure A.11.

http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Entity_Feature_Value.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 192

Figure A.11: Abstract structure of the Entity-Property-Quality ODP.

SAMPLE: See Figure A.12.

ELEMENTS: The core of this ODP is formed by the qualities, placed in a single
hierarchy (the qualities are disjoint and the superclass is covered by them, like in
the Value Partition ODP). Entities are linked to qualities by a functional object
property whose domain and range are the entities and the qualities, respectively.

IMPLEMENTATION: The first step is to create the qualities hierarchy, in the same
way as the Value Partition ODP. Create the functional object property to link
entities to qualities, adding the entities as domain and quality as range. Link
entities to qualities by existential restrictions.

RESULT: The qualities that modify independent entities are modelled, and which
qualities apply to which entities is defined.

SIDE EFFECTS: Proliferation of object properties (one for each quality). This ODP
Cannot handle multi-aspect qualities (features).

ADDITIONAL INFORMATION: See also Entity-Feature-Value ODP and Entity-
Quality ODP.

REFERENCES:

• Alan Rector (Personal Communication).

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 193

Figure A.12: Sample structure of the Entity-Property-Quality ODP.

• Mikel Egana, Alan Rector, Robert Stevens and Erick Antezana. Applying
Ontology Design Patterns in bio-ontologies. EKAW 2008. LNCS 5268,
pp. 7-16, 2008.

URL: Entity Property Quality.owl

A.7 Entity-Quality ODP

CLASSIFICATION: Good Practice.

MOTIVATION: Qualities modify independent entities (e.g. position, colour, etc.)
and thus they are dependent entities.

AIM: To model qualities without relying in a proliferation of object properties, as in
the Entity-Property-Quality ODP.

STRUCTURE: See Figure A.13.

SAMPLE: See Figure A.14.

http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Entity_Property_Quality.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 194

Figure A.13: Abstract structure of the Entity-Quality ODP.

Figure A.14: Sample structure of the Entity-Quality ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 195

ELEMENTS: The core of this ODP is formed by the qualities, placed in a single
hierarchy (the qualities are disjoint and the superclass is covered by them, like in
the Value Partition ODP). Entities are linked to qualities by an object property,
and a Qualifed Cardinality Restriction is used to express whether the quality
is intrisic (exactly 1) or accidental (max 1). Also, qualities are limited to the
entities to which they apply by an universal restriction (e.g. mitochondria do not
regulate mitosis).

IMPLEMENTATION: The first step is to create the qualities hierarchy, in the same
way as the Value Partition ODP. Create the object property to link entities to
qualities. Add the restriction [QualityCategory inv (HasQuality) only Entity]
(this restricts the qualities to the entity). Add the restriction [EntityCategory
HasQuality max 1 QualityCategory] or [EntityCategory HasQuality exactly 1
QualityCategory] (this restricts the entities to the qualities, max 1 in the case of
accidental qualities and exactly 1 in the case of intrinsic qualities).

RESULT: The entities and the qualities of those entities are properly separated, and
which qualities apply to which entities is also expressed.

SIDE EFFECTS: it is very difficult to add sub-qualities. Cannot handle multi-aspect
qualities.

ADDITIONAL INFORMATION: See also Entity-Feature-Value and Entity-Property-
Value.

REFERENCES:

• P. Grenon, B. Smith, L. Goldberg. Biodynamic ontology: Applying BFO
in the biomedical domain. In Pisanelli, D.M., ed.: Ontologies in Medicine,
IOS Press (2004) 20-38.

• Alan Rector (Personal Communication).

• Mikel Egana, Alan Rector, Robert Stevens and Erick Antezana. Applying
Ontology Design Patterns in bio-ontologies. EKAW 2008. LNCS 5268,
pp. 7-16, 2008.

URL: Entity Quality.owl

http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Entity_Quality.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 196

Figure A.15: Abstract structure of the Exception ODP.

A.8 Exception ODP

CLASSIFICATION: Extension.

MOTIVATION: Plenty of areas of knowledge work with defaults or canonical knowl-
edge: biological classifications, for example, state what is the canonical norm
and then the exceptions are classified under the norm, even if the classification
is inconsistent from the point of view of logic. A clear example can be found in
the classification of cells: in canonical biology eukaryotic cells are considered
to be cells with a nucleus. Mammalian red blood cells are considered by any
biologist as eukaryotic cells, but they lack a nucleus. Thus they are a subclass of
eukaryotic cells, but they break the condition for belonging to that class (having
a nucleus).

AIM: to model exceptions without breaking the strict class-subclass hierarchy: for
example the class MammalianRedBloodCell (with the restriction HasNucleus
exactly 0) would be a subclass of EukaryoticCell (with the restriction HasNu-
cleus exactly 1), resulting in an inconsistent ontology. There can be exceptions
to the exception in the next level: avian red blood cells do posses a nucleus, thus,
they are considered normal eukaryotic cells (they are an exception to the norm
that all red blood cells lack a nucleus). So the problem that this ODP solves can
rise in different levels.

STRUCTURE: See Figure A.15.

SAMPLE: See Figure A.16.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 197

Figure A.16: Sample structure of the Exception ODP.

ELEMENTS: The most important elements are the newly created TypicalEukary-
oticCell, TypicalRedBloodCell, AtypicalEukaryoticCell, AtypicalRedBloodCell
classes. The rest of the classes are maintained. The most important object prop-
erty is the discriminating property, in this case, HasNucleus.

IMPLEMENTATION: Starting from the example ontology described in the Aim
section, two disjoint classes are created for typical and atypical elements. The
discriminating condition HasNucleus is only stated in the typical subclass. A
covering axiom is added to the main class (i.e. EukaryoticCell) to state that
all instances must belong to one or the other subclass (TypicalEukaryoticCell
or AtypicalEukaryoticCell). A covering axiom is done by creating a equivalent
class (a neccesary and sufficient condition) that is the union of the subclasses (In
this case TypicalEukaryoticCell and AtypicalEukaryoticCell). The reasoner will
infer the whole structure.

RESULT: After reasoning the correct hierarchy is obtained, with the typical/atypical
distinction at every level.

SIDE EFFECTS: If the ODP is used in plenty of different levels of the ontology it
can produce too complex and unmanageable ontologies. This type of structure
can be very counter-intuitive for biologists.

REFERENCES:

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 198

Figure A.17: Abstract structure of the Interactor Role Interaction ODP.

• http://www.co-ode.org/resources/tutorials/bio/

• Robert Stevens, Mikel Egana Aranguren, Katy Wolnstencroft, Ulrike Sat-
tler, Nick Drummond and Mathew Horridge. Using OWL to Model Bi-
ological Knowledge. International Journal of Human Computer Studies
2006, 65:7, 583-594.

URL: Exception.owl

A.9 Interactor Role Interaction ODP

CLASSIFICATION: Domain Modelling.

MOTIVATION: Protein Protein Interactions (PPI) are the base for most of the biolog-
ical processes at a molecular level. For example (http://www.ebi.ac.uk/intact/binary-
search/faces/search.xhtml?query=BRCA2).

AIM: To model different interactions where the interactors can have different roles.

STRUCTURE: See Figure A.17.

SAMPLE: See Figure A.18.

ELEMENTS: Three object properties are needed: HasRole, RoleInInteraction, and
HasParticipant. This ODP has got two aims: close the interactors an interac-
tion can have, and decouple roles from interactions. An interaction is a unique
combination of interactors and roles, whereas an interactor can have at the same

http://www.co-ode.org/resources/tutorials/bio/
http://www.gong.manchester.ac.uk/odp/owl/Extension_ODP/Exception.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 199

Figure A.18: Sample structure of the Interactor Role Interaction ODP.

time many roles and participate in many different interactions (but never with
different roles in the same interaction).

IMPLEMENTATION: The three object properties must be created first (HasRole,
RoleInInteraction and HasParticipant). Each interaction bears a closure, so apart
of an axiom [HasParticipant exactly 1 InteractorX], an axiom of the type [Has-
Participant only (Interactor1 or InteractorN)] should be used. For each interactor,
add an axiom of the type [HasRole some (Role and RoleInInteraction Interac-
tion), so queries can be decomposed for roles or participation in interactions, or
participations in interactions with certain roles.

RESULT: The participation events and the role with which interactors participate in
concrete interactions are decoupled. Also, each interaction has a given set of
interactors and not more.

ADDITIONAL INFORMATION: See also the following paper: M. Dumontier. Bi-
ological situational modeling: Defining Molecular Roles in Pathways and Reac-
tions. 2008. OWL Experiences and Design (OWLED-EU 2008).

REFERENCES:

• http://odps.sourceforge.net

• http://www.cellcycleontology.org/

URL: Interactor Role Interaction.owl

http://odps.sourceforge.net
http://www.cellcycleontology.org/
http://www.gong.manchester.ac.uk/odp/owl/Domain_Modelling_ODP/Interactor_Role_Interaction.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 200

A.10 List ODP

ALSO KNOWN AS: Linked list.

CLASSIFICATION: Domain Modelling.

MOTIVATION: An ordered group of elements is a very intuitive modelling structure,
yet the semantics of such a construct in OWL DL are complex. Biology is full
of structures where the order of the elements is vital (e.g. parts of genes). If that
order is altered (e.g. a change of the order of introns and exons in a gene) there
can be serious damage in biological systems.

AIM: The List is used to model ordered elements, representing the semantics of
the order: in this case the ODP will be used to build a gene starting from
some elements of the Sequence Ontology: Promoter (SO:0000167), Termina-
tor (SO:0000141), Intron (SO:0000188) and Exon (SO:0000147). For the sake
of clarity a minimalist gene is built, with a very simple structure.

STRUCTURE: See Figure A.19.

SAMPLE: See Figure A.20.

ELEMENTS: The most important elements are the different classes that can be used
to build the List (Promoter, Terminator, Intron and Exon) and the class that it
is modelled using the List (in this case Gene). The needed relationships are:
Contents (functional), Rest (transitive) and Next (functional and a subproperty
of Rest).

IMPLEMENTATION: There is a Protege wizard available for easily creating lists.

RESULT: The result is the class Gene, with the elements in the proper order. Apart of
being an efficient way of modelling ordered elements, Lists offer the possibility
of creating a powerful classyfing system: Lists of plenty of kinds can be defined
(e.g. definitions of the following type: any List containing elements A and B,
not followed by C and then followed by two D-s) and they will be put in the
correct position of the hierarchy of already defined lists. Using that procedure,
for example, different protein fingerprints (lists of regular expressions) or dif-
ferent kinds of genes can be defined. The models can be queried, for example,
with a given gene defined with a certain ordered combination of introns, exons,

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 201

Figure A.19: Abstract structure of the List ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 202

Figure A.20: Sample structure of the List ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 203

promoter and terminator to see in which position of the hierarchy is classified
and to which genes does it relate.

SIDE EFFECTS: (i) If very long and complex lists are used there can be a decrease
in reasoning performance. (ii) Maintenance of Lists is a very difficult task.

ADDITIONAL INFORMATION: The Linked List is one of the oldest and most
widely used data structures in computer science; plenty of programming lan-
guages offer primitives similar to it. The Circularly Linked List is a List that ends
up with the beggining of itself, creating a circle. The application of the Circularly
Linked List in OWL DL has not been investigated yet. The wikipedia entry offers
plenty of information on the subject: http://en.wikipedia.org/wiki/Linked list.

REFERENCES:

• http://www.co-ode.org/resources/tutorials/bio/

• Nick Drummond, Alan Rector, Robert Stevens, Georgina Moulton, Matthew
Horridge, Hai H. Wang, Julian Seidenberg. Putting OWL in Order: Pat-
terns for Sequences in OWL. OWLed 2006.

• Robert Stevens, Mikel Egana Aranguren, Katy Wolnstencroft, Ulrike Sat-
tler, Nick Drummond and Mathew Horridge. Using OWL to Model Bi-
ological Knowledge. International Journal of Human Computer Studies
2006, 65:7, 583-594.

URL: List.owl

A.11 Nary DataType Relationship ODP

CLASSIFICATION: Extension.

MOTIVATION: Numerical values can have different aspects. For example, a boiling
point has a temperature value, a pressure, etc. This simple ODP should be used
to model those cases.

AIM: To represent a datatype value with more than one aspect.

STRUCTURE: See Figure A.21.

SAMPLE: See Figure A.22.

http://www.co-ode.org/resources/tutorials/bio/
http://www.gong.manchester.ac.uk/odp/owl/Domain_Modelling_ODP/List.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 204

Figure A.21: Abstract structure of the Nary DataType Relationship ODP.

Figure A.22: Sample structure of the Nary DataType Relationship ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 205

ELEMENTS: The original value is reified (decomposed) in all the neccesary data
type properties and values.

IMPLEMENTATION: The first step is to choose the datatype value that needs to
be reified and create a class for it (e.g. StandardWaterBoilingPoint), then add
a restriction (e.g. [Water HasBoilingPoint some StandardWaterBoilingPoint])
and all the neccesary datatype properties and restrictions to the reified class
(e.g. [StandardWaterBoilingPoint partial HasUnit value celsius], [StandardWa-
terBoilingPoint partial HasValue value 100], etc.).

RESULT: After the reification a value with different aspects is represented in the
ontology.

RELATED ODPS: Nary Relationship.

REFERENCES:

• http://www.cs.man.ac.uk/˜stevensr/menupages/ontologies.php

• Bijan Parsia and Michael Smith. Quantities in OWL. OWLed 2008 EU.

URL: Nary DataType Relationship.owl

A.12 Nary Relationship ODP

CLASSIFICATION: Extension.

MOTIVATION: The biomedical domain is full of situations were relationships should
hold between more than one element, but OWL only allows to express properties
linking two individuals at a time. There can be a situation where a relationship
and some properties of that relationship must be modelled; that can not be done
in a direct manner with OWL. For example, a diagnosis has a result, a proba-
bility, and the person who has been diagnosed; A catalytic reaction has got a
substrate, some products, catalytic constants and it is catalysed by an enzyme.

AIM: To express a relationship between more than one element. A Gene Ontology
example can be found in the term GolgiToPlasmaMembrane CFTRproteinTrans-
port, where there is a transport phenomenom which relates to three elements at
the same time: the start (Golgi apparatus), the end (plasma membrane) and the

http://www.cs.man.ac.uk/~stevensr/menupages/ontologies.php
http://www.gong.manchester.ac.uk/odp/owl/Extension_ODP/Nary_DataType_Relationship.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 206

Figure A.23: Abstract structure of the Nary Relationship ODP.

Figure A.24: Sample structure of the Nary Relationship ODP.

transportee (CFTR protein). The transport relation can not be modelled in OWL
pointing to the three elements, so this ODP must be applied.

STRUCTURE: See Figure A.23.

SAMPLE: See Figure A.24.

ELEMENTS: The original elements of the Nary Relationship are conserved in classes
and a new class is reified to model the Nary Relationship, in this case a class
called CFTRGolgiToPlasmaTransport. The relationships of each element to the
reified class are created: TransportsFrom, TransportsTo and Transports.

IMPLEMENTATION: There is a Protege wizard available for easily creating N-ary
Relationships.

RESULT: After the reification a N-ary relationship is stated in the ontology.

SIDE EFFECTS: The class that holds the Nary relationship must have a clear name,
because the maintainer must know that the class is not a proper class, other-
wise the ontology becomes confusing. Therefore naming consistency should be
maintained if different Nary relationships are created.

ADDITIONAL INFORMATION: It could be argued that this is not really an ODP,
as n-ary relationships in OWL do not exist, and, therefore, this would be a nam-
ing ODP instead of a semantic ODP, as the key of the pattern is how the class
holding the alleged n-ary relationship is named.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 207

REFERENCES:

• Robert Stevens, Mikel Egana Aranguren, Katy Wolnstencroft, Ulrike Sat-
tler, Nick Drummond and Mathew Horridge. Using OWL to Model Bi-
ological Knowledge. International Journal of Human Computer Studies
2006, 65:7, 583-594.

• http://www.co-ode.org/resources/tutorials/bio/

• http://www.w3.org/TR/swbp-n-aryRelations/

URL: Nary Relationship.owl

A.13 Normalisation ODP

ALSO KNOWN AS: Untangling.

CLASSIFICATION: Good Practice.

MOTIVATION: There are ontologies where a given class can have plenty of super-
classes, building a polyhierarchy. If all those subsumption relationships are di-
rectly stated by the ontology maintainer, two main problems rise: (i) the ontol-
ogy becomes very difficult to maintain: whenever a subsumption must be deleted
(because a class has changed) or created (because a new class has been created)
it has to be done by hand; in a polyhierarchy the process becomes very inefficient
and error-prone. (ii) the semantics are implicitly stated, not explicitly: any other
ontologist or reasoner only knows that a class is a subclass of its superclasses,
without knowing why.

AIM: To untangle a polyhierarchy, coding the subsumption relationships using re-
strictions rather than class-subclass relationships. The application example for
this ODP is adapted from the Cell Type Ontology. In the example, the subsump-
tion relationships that already are in the Cell Type Ontology are inferred by the
reasoner instead of hard-coded. The term Neutrophil is used as an example class
to show how a class can relate to different modules.

STRUCTURE: See Figure A.25.

SAMPLE: See Figure A.26.

http://www.co-ode.org/resources/tutorials/bio/
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.gong.manchester.ac.uk/odp/owl/Extension_ODP/Nary_Relationship.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 208

Figure A.25: Abstract structure of the Normalisation ODP.

ELEMENTS: The original classes of the ontology are divided in different axes. The
conditions for each subsumption relationship are encoded as restrictions (e.g.
[PerformsFunction some Defense]) that will relate the different modules.

IMPLEMENTATION: Identify the modules: group the classes. Create the modules,
maintaining only one parent for any given primitive class and making primitive
siblings disjoint. Redefine the classes (or define the newly added classes) accord-
ing to the conditions for belonging to each module. Protege includes a wizard,
the restrictions matrix, that helps in the process.

RESULT: The ontology gets untangled and becomes a collection of neat modules.
The rest of the semantics are given by restrictions pointing to the modules, and
the reasoner maintains the structure, avoding error-prone human maintenance of
the polyhierarchy.

REFERENCES:

• Alan L. Rector. Modularisation of Domain Ontologies Implemented in
Description Logics and related formalisms including OWL. K-CAP 2003.

• Alan L. Rector, Chris Wroe, Jeremy Rogers and Angus Roberts. Untan-
gling Taxonomies and Relationships: personal and Practical Problems in
Loosely Coupled Development of Large Ontologies. K-CAP 2001.

• http://www.co-ode.org/resources/tutorials/bio/

URL: Normalisation.owl

http://www.co-ode.org/resources/tutorials/bio/
http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Normalisation.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 209

Figure A.26: Sample structure of the Normalisation ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 210

Figure A.27: Abstract structure of the Selector ODP.

A.14 Selector ODP

CLASSIFICATION: Good Practice.

MOTIVATION: Selectors are widely used in the biomedical domain, especially in
the realm of anatomy. A selector is a modifier that can be used to select between
identical entities, e.g. right and left hand. Selectors are usually associated with
simmetry (left-right,anterior-posterior,lateral-medial) and sometimes hard coded
in ontologies, that is, for example left hand and right hand are introduced as
subclasses of hand, which adds an unecessary amount of classes. This ODP
avoids such proliferation of classes.

AIM: To recreate selectors, that is refining entities that can be used to choose between
to alternatives: for example, right or left hand.

STRUCTURE: See Figure A.27.

SAMPLE: See Figure A.28.

ELEMENTS: The main element is the selector class, be it Laterality (covered by Left
and Right), AnteriorPosteriorSelector (covered by Anterior and Posterior), etc.
A functional object property, e.g. HasLaterality, is used to add a selector to the
classes of the domain hierarchy (e.g. hand can be left or right).

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 211

Figure A.28: Sample structure of the Selector ODP.

IMPLEMENTATION: Usually this ODP is implemented in already existing ontolo-
gies where selectors are implicit. For example, in the FMA ontology, the class
Hand has the subclasses LeftHand and RightHand. Using this ODP, the classes
LeftHand and RightHand can be deleted, and the class Hand is linked to the class
Laterality via an existential restriction on the HasLaterality property.

RESULT: The original ontology is considerably reduced in size. If we want to refer
the original entities, we can do it by reusing the HasSelector property. For ex-
ample, if we want to define a burn on the right hand, we can use the following
expression: [Burn and Affects some (Hand and HasLaterality some Right)].

SIDE EFFECTS: Depending on the selection procedure, information could be lost
when deleting the subclasses (e.g. RightHand), as they can have further sub-
classes or interesting axioms.

ADDITIONAL INFORMATION: See also Entity-Feature-Value, Entity-Property-
Value and Entity-Quality.

REFERENCES:

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 212

• Alan Rector (Personal Communication).

• Eleni Mikroyannidi. Abstracting and generalising a large anatomy ontol-
ogy. MSc Dissertation, Computer Science, Uni. of Manchester. 2008.

URL: Selector.owl

A.15 Sequence ODP

CLASSIFICATION: Domain Modelling.

MOTIVATION: In biological knowledge there are events that happen one after the
other in a single related sequence, such as the cell cycle. Sometimes the only
important thing is what happens after or before a concrete event, without the
concrete order of all the events (in that case we would need the List ODP, for
example to compare different sequences of events).

AIM: To model a sequence of events, one after the other.

STRUCTURE: See Figure A.29.

SAMPLE: See Figure A.30.

ELEMENTS: The elements of this ODP are the classes that make up the sequence
(in this case the phases of the cell cycle, thus G1, S, G2, M) and the four
properties Precedes (transitive), ImmediatelyPrecedes (subproperty of Precedes,
functional) PrecededBy (transitive) and ImmediatelyPrecededBy (subproperty
of PrecededBy, functional).

IMPLEMENTATION: The sequence is created by adding restrictions in the prop-
erties ImmediatelyPrecededBy and ImmediatelyPrecedes for each phase, except
in the last one (only ImmediatelyPrecededBy) and the first one (only Imediate-
lyPrecedes).

RESULT: The sequence of events is codified creating an structure that can be queried
with queries such as [OccursAt some (PrecededBy some S)], if we want anything
that happens after S, or [OccursAt some (ImmediatelyPrecededBy some S)], if
we want to know what happens right after S but not later (thus not G2 or M).

RELATED ODPS: List ODP, AdaptedSEP ODP.

http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Selector.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 213

Figure A.29: Abstract structure of the Sequence ODP.

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 214

Figure A.30: Sample structure of the Sequence ODP.

ADDITIONAL INFORMATION: in theory only ImmediatelyPrecedes relationships
should be asserted and the reasoner should infer the inverse relationship, but it
does not work for the superproperty of the inverse. Also, for the inverse to work
properly some kind of closure (onlysome) or defined classes are needed.

REFERENCES:

• http://www.cellcycleontology.org

URL: Sequence.owl

A.16 Upper Level Ontology ODP

ALSO KNOWN AS: Foundational ontology.

CLASSIFICATION: Good Practice.

MOTIVATION: Different ontologies of a given domain share very general types of
concepts, like Substance, Modifier, etc. These types of concepts are grounded in
philosophical criteria, like distinctions between Occurents and Continuants. The

http://www.cellcycleontology.org
http://www.gong.manchester.ac.uk/odp/owl/Domain_Modelling_ODP/Sequence.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 215

Figure A.31: Abstract structure of the Upper Level Ontology ODP.

different domain ontologies can thus be integrated in one Upper Level Ontology,
each ontology having different relationships pointing to the concepts of the Up-
per Level Ontology. The Upper Level Ontology used here as an example is the
Ontology of Biomedical Reality (OBR).

AIM: To create an ontology that can integrate different ontologies in itself.

STRUCTURE: See Figure A.31.

SAMPLE: See Figure A.32.

ELEMENTS: All the classes that represent a conceptual category.

IMPLEMENTATION: The different hierarchies of primitive classes must be asserted
using disjoints.

RESULT: By endorsing to a given Upper Level Ontology when building a domain
ontology the ontologists makes the integration of the ontology with other on-
tologies a much easier process. Besides, the ontology becomes a cleaner model

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 216

Figure A.32: Sample structure of the Upper Level Ontology ODP.

with different modules.

SIDE EFFECTS: The ontology is committed to a concrete view of the knowledge
domain (given by the Upper Level Ontology), and therefore the use and implan-
tation of Upper Level Ontologies is very controversial.

REFERENCES:

• Barry Smith et al. A Strategy for Improving and Integrating Biomedical
Ontologies. AMIA 2005.

• http://www.co-ode.org/resources/tutorials/bio/

URL: Upper Level Ontology.owl

A.17 Value Partition ODP

ALSO KNOWN AS: Enumeration, if it is built using individuals instead of classes.

CLASSIFICATION: Good Practice.

MOTIVATION: Reality is full of attributes of elements. For example, a person can be
defined as being short, medium or tall, and the attribute height can just get those
values. Height is said to be covered or exhausted by those values; the possible
heights are only those three. Biology is full of such situations: metabolism
can only be anabolism or catabolism, membrane transport can only be uniport,
sinport or antiport, regulation is always positive, negative, and so forth.

AIM: To model values of attributes. In this example we model biological regulation,
being negative or positive. PositiveRegulationOfCellKilling, from GO, is linked
to the appropriate value.

http://www.co-ode.org/resources/tutorials/bio/
http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Upper_Level_Ontology.owl

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 217

Figure A.33: Abstract structure of the Value Partition ODP.

STRUCTURE: See Figure A.33.

SAMPLE: See Figure A.34.

ELEMENTS: The main elements are the classes that make up the Value Partition
itself: a class for the attribute and the subclasses for the values. In this case,
Regulation, Positive, and Negative, respectively. The most important relation-
ship is the one that links each element of the knowledge domain with the values
of the Value Partition. In this case, IsRegulationOfType (functional).

IMPLEMENTATION: Identify the attributes every element must be described with.
For each attribute, create a class under Modifier (or the pertinent upper level
distinction that it is used in the ontology). In each attribute class create a sub-
class for every value and make them disjoint. Create a covering axiom defining
the attribute class. Create the restrictions pointing to the values of the Value
Partition.

RESULT: The attributes and the elements that are described or modified by the at-
tributes get untangled: whenever a new element enters the domain (e.g. another

APPENDIX A. THE CATALOGUE OF ONTOLOGY DESIGN PATTERNS 218

Figure A.34: Sample structure of the Value Partition ODP.

regulation phenomenon) it is only a matter of adding a restriction pointing to the
pertinent Value Partition class. The values that can be given to a certain attribute
are constrained, enforcing a better modelling.

ADDITIONAL INFORMATION: The Value Partition built with classes offers an
advantage over the Enumeration (a Value Partition built with individuals): new
subpartitions can be built for each of the value classes (e.g. very tall).

REFERENCES:

• http://www.co-ode.org/resources/tutorials/bio/

• http://www.w3.org/TR/swbp-specified-values

URL: Value Partition.owl

http://www.co-ode.org/resources/tutorials/bio/
http://www.w3.org/TR/swbp-specified-values
http://www.gong.manchester.ac.uk/odp/owl/Good_Practice_ODP/Value_Partition.owl

Appendix B

Ontology quality values for CL and
nCL

CL nCL
Formalisation 5 5

Relations 1 5
Cohesion 1 5

Tangledness 1 5
Redundancy 5 5

Structural accuracy 5 5
Domain coverage 5 3

Table B.1: Quality comparison of CL and nCL: structural.

219

APPENDIX B. ONTOLOGY QUALITY VALUES FOR CL AND NCL 220

CL nCL
Reference Ontology 3 5

Controlled Vocabulary 5 5
Schema and Value Reconciliation 1 5

Consistent Search and Query 1 5
Knowledge Acquisition 1 5

Clustering and Similarity 3 5
Indexing and Linking 5 3

Results Representation 1 1
Classifying Instances 1 5

Text Analysis 3 5
Guidance and Decision Trees 1 5

Knowledge Reuse 1 5
Inferencing 1 5

Interoperability 3 5

Table B.2: Quality comparison of CL and nCL: functionality.

CL nCL
Technological maturity 5 5

Knowledge maturity 5 3
Robustness 1 5
Authority 5 3

Table B.3: Quality comparison of CL and nCL: reliability.

CL nCL
Readability 1 1
Reusability 3 5

Table B.4: Quality comparison of CL and nCL: usability.

CL nCL
Stability 1 5

Analysability 1 5
Changeability 1 5

Testability 5 5

Table B.5: Quality comparison of CL and nCL: Maintainability.

CL nCL
Effectiveness 5 3

Popularity 5 1
Engagement 3 1

Table B.6: Quality comparison of CL and nCL: Quality in use.

APPENDIX B. ONTOLOGY QUALITY VALUES FOR CL AND NCL 221

CL nCL
Structure 3.28 4.71

Functionality 2.14 4.57
Reliability 4 4
Usability 2.5 3
Efficiency 3 1

Maintainability 2 5
Quality in use 4.33 1.66

Table B.7: Overall comparison of CL and nCL.

	Abstract
	Declaration
	Copyright
	Dedication
	Acknowledgements
	The author
	Publications
	0.1 Journals
	0.2 Conference proceedings
	0.3 Workshops

	About this document
	0.4 Electronic version
	0.5 Abbreviations
	0.6 Glossary

	1 Introduction
	1.1 Bio-ontologies
	1.2 Ontology Design Patterns (ODPs) for bio-ontologies
	1.3 Research hypothesis and research questions
	1.4 Contributions
	1.5 Thesis outline

	2 ODPs for bio-ontologies
	2.1 Bioinformatics and the Life Sciences Semantic Web (LSSW)
	2.1.1 Current bioinformatics and the need for precise semantics
	2.1.2 Life Sciences Semantic Web

	2.2 Ontologies
	2.3 Knowledge Representation (KR) languages
	2.3.1 Extensible Markup Language (XML)
	2.3.2 Resource Description Framework (RDF)
	2.3.3 Resource Description Framework Schema (RDFS)
	2.3.4 Web Ontology Language (OWL)
	2.3.4.1 OWL syntax and semantics
	2.3.4.2 OWL in relation to RDF and RDFS
	2.3.4.3 OWL and LSSW

	2.3.5 Open Biomedical Ontologies (OBO) format

	2.4 Current bio-ontologies
	2.5 Quality problems of current bio-ontologies
	2.6 ODPs
	2.6.1 ODPs in the literature
	2.6.2 ODPs in this work
	2.6.2.1 Comparison to other initiatives
	2.6.2.2 A working definition for ODPs
	2.6.2.3 Advantages of using ODPs
	2.6.2.4 Methods for applying ODPs

	2.7 Conclusions

	3 A Catalogue of ODPs
	3.1 Motivation and requirements
	3.2 Design
	3.3 Implementation
	3.4 Using the catalogue
	3.5 Related resources
	3.6 Conclusions

	4 Ontology PreProcessor Language (OPPL)
	4.1 Description of OPPL
	4.1.1 Origin
	4.1.2 Definition and general properties
	4.1.3 OPPL 1 and OPPL 2
	4.1.4 Related work

	4.2 Using OPPL
	4.3 Conclusions

	5 Evaluation framework
	5.1 Introduction
	5.2 ODP quality
	5.3 Ontology engineering
	5.4 Ontology quality (ISO 9126 standard)
	5.5 Conclusions

	6 Evaluation results
	6.1 Execution of use cases
	6.1.1 Application of the Upper Level Ontology ODP in CCO
	6.1.2 Application of the Sequence ODP in CCO
	6.1.3 Application of the Entity-Quality ODP in GO
	6.1.4 Application of the Selector ODP in GO
	6.1.5 Application of the Normalisation ODP in CL

	6.2 Results
	6.2.1 Upper Level Ontology ODP in CCO
	6.2.2 Sequence ODP in CCO
	6.2.3 Entity-Quality ODP in GO
	6.2.4 Selector ODP in GO
	6.2.5 Normalisation ODP in CL

	6.3 Conclusions

	7 Conclusions
	7.1 Research hypothesis and research questions revisited
	7.1.1 What are ODPs?
	7.1.2 How can we obtain ODPs?
	7.1.3 How can we apply ODPs?
	7.1.4 How can we assess ODP quality?
	7.1.5 How can we assess the impact of ODPs in bio-ontology engineering?
	7.1.6 How can we assess the change of quality of bio-ontologies as a result of applying ODPs?
	7.1.7 How does the use of ODPs change the quality of concrete bio-ontologies?

	7.2 Contributions
	7.2.1 Explanation of the concept of ODPs
	7.2.2 Catalogue of ODPs
	7.2.3 OPPL
	7.2.4 Evaluation framework for ontology quality
	7.2.5 Improved ontological artefacts

	7.3 Outstanding issues
	7.3.1 Candidate ODPs
	7.3.2 Catalogue improvements
	7.3.3 Tools
	7.3.4 Evaluation framework improvements

	7.4 Future work
	7.4.1 More ODPs
	7.4.2 Definition and representation of ODPs
	7.4.3 ODPs mining

	7.5 Overall conclusion

	Bibliography
	A The Catalogue of Ontology Design Patterns
	A.1 Adapted SEP ODP
	A.2 Closure ODP
	A.3 Composite Property Chain ODP
	A.4 Defined Class Description ODP
	A.5 Entity-Feature-Value ODP
	A.6 Entity-Property-Quality ODP
	A.7 Entity-Quality ODP
	A.8 Exception ODP
	A.9 Interactor Role Interaction ODP
	A.10 List ODP
	A.11 Nary DataType Relationship ODP
	A.12 Nary Relationship ODP
	A.13 Normalisation ODP
	A.14 Selector ODP
	A.15 Sequence ODP
	A.16 Upper Level Ontology ODP
	A.17 Value Partition ODP

	B Ontology quality values for CL and nCL

